A Deep Learning-Based Acoustic Signal Analysis Method for Monitoring the Distillation Columns' Potential Faults

被引:0
|
作者
Wang, Honghai [1 ]
Zheng, Haotian [1 ]
Zhang, Zhixi [1 ]
Wang, Guangyan [2 ]
机构
[1] Hebei Univ Technol, Sch Chem Engn & Technol, Natl Local Joint Engn Lab Energy Conservat Chem Pr, Tianjin 300130, Peoples R China
[2] Tianjin Univ Commerce, Sch Informat Engn, Tianjin 300134, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 16期
基金
中国国家自然科学基金;
关键词
chemical equipment; distillation column; deep learning; passive acoustic monitoring; neural network; AXIAL FANS; STATE;
D O I
10.3390/app14167026
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Distillation columns are vital for substance separation and purification in various industries, where malfunctions can lead to equipment damage, compromised product quality, production interruptions, and environmental harm. Early fault detection using AI-driven methods like deep learning can mitigate downtime and safety risks. This study employed a lab-scale distillation column to collect passive acoustic signals under normal conditions and three potential faults: flooding, dry tray, and leakage. Signal processing techniques were used to extract acoustic features from low signal-to-noise ratios and weak time-domain characteristics. A deep learning-based passive acoustic feature recognition method was then applied, achieving an average accuracy of 99.03% on Mel-frequency cepstral coefficient (MFCC) spectrogram datasets. This method demonstrated robust performance across different fault types and limited data scenarios, effectively predicting and detecting potential faults in distillation columns.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [41] Deep Learning-Based Signal Quality Assessment for Wearable ECGs
    Zhang X.
    Li J.
    Cai Z.
    Zhao L.
    Liu C.
    IEEE Instrumentation and Measurement Magazine, 2022, 25 (05): : 41 - 52
  • [42] Influence of Radar Signal Processing on Deep Learning-based Classification
    Kearney, Sean
    Gurbuz, Sevgi Z.
    2023 IEEE RADAR CONFERENCE, RADARCONF23, 2023,
  • [43] A Deep Learning-based Stress Detection Algorithm with Speech Signal
    Han, Hyewon
    Byun, Kyunggeun
    Kang, Hong-Goo
    AVSU'18: PROCEEDINGS OF THE 2018 WORKSHOP ON AUDIO-VISUAL SCENE UNDERSTANDING FOR IMMERSIVE MULTIMEDIA, 2018, : 11 - 15
  • [44] Deep Learning-Based Vibration Signal Personnel Positioning System
    Yu, Yang
    Waltereit, Marian
    Matkovic, Viktor
    Hou, Weiyan
    Weis, Torben
    IEEE ACCESS, 2020, 8 : 226108 - 226118
  • [45] Deep Learning-Based Signal Modulation Identification in OFDM Systems
    Hong, Sheng
    Zhang, Yibin
    Wang, Yu
    Gu, Hao
    Gui, Guan
    Sari, Hikmet
    IEEE ACCESS, 2019, 7 : 114631 - 114638
  • [46] Data Generation and Augmentation Method for Deep Learning-Based VDU Leakage Signal Restoration Algorithm
    Nam, Taesik
    Choi, Dong-Hoon
    Lee, Euibum
    Jo, Han-Shin
    Yook, Jong-Gwan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 5220 - 5234
  • [47] Transfer learning-based deep CNN model for multiple faults detection in SCIM
    Prashant Kumar
    Ananda Shankar Hati
    Neural Computing and Applications, 2021, 33 : 15851 - 15862
  • [48] Transfer learning-based deep CNN model for multiple faults detection in SCIM
    Kumar, Prashant
    Hati, Ananda Shankar
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (22): : 15851 - 15862
  • [49] Deep learning-based ensemble model for classification of photovoltaic module visual faults
    Sridharan, Naveen Venkatesh
    Sugumaran, Vaithiyanathan
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (02) : 5287 - 5302
  • [50] Deep Reinforcement Learning-Based RMSA Policy Distillation for Elastic Optical Networks
    Tang, Bixia
    Huang, Yue-Cai
    Xue, Yun
    Zhou, Weixing
    MATHEMATICS, 2022, 10 (18)