A Deep Learning-Based Acoustic Signal Analysis Method for Monitoring the Distillation Columns' Potential Faults

被引:0
|
作者
Wang, Honghai [1 ]
Zheng, Haotian [1 ]
Zhang, Zhixi [1 ]
Wang, Guangyan [2 ]
机构
[1] Hebei Univ Technol, Sch Chem Engn & Technol, Natl Local Joint Engn Lab Energy Conservat Chem Pr, Tianjin 300130, Peoples R China
[2] Tianjin Univ Commerce, Sch Informat Engn, Tianjin 300134, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 16期
基金
中国国家自然科学基金;
关键词
chemical equipment; distillation column; deep learning; passive acoustic monitoring; neural network; AXIAL FANS; STATE;
D O I
10.3390/app14167026
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Distillation columns are vital for substance separation and purification in various industries, where malfunctions can lead to equipment damage, compromised product quality, production interruptions, and environmental harm. Early fault detection using AI-driven methods like deep learning can mitigate downtime and safety risks. This study employed a lab-scale distillation column to collect passive acoustic signals under normal conditions and three potential faults: flooding, dry tray, and leakage. Signal processing techniques were used to extract acoustic features from low signal-to-noise ratios and weak time-domain characteristics. A deep learning-based passive acoustic feature recognition method was then applied, achieving an average accuracy of 99.03% on Mel-frequency cepstral coefficient (MFCC) spectrogram datasets. This method demonstrated robust performance across different fault types and limited data scenarios, effectively predicting and detecting potential faults in distillation columns.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [31] Deep learning-based method for sentiment analysis for patients’ drug reviews
    Al-Hadhrami S.
    Vinko T.
    Al-Hadhrami T.
    Saeed F.
    Qasem S.N.
    PeerJ Computer Science, 2024, 10
  • [32] A deep learning-based medication behavior monitoring system
    Roh, Hyeji
    Shin, Seulgi
    Han, Jinseo
    Lim, Sangsoon
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (02) : 1513 - 1528
  • [33] Deep Learning-Based Phase Unwrapping Method
    Li, Dongxu
    Xie, Xianming
    IEEE ACCESS, 2023, 11 : 85836 - 85851
  • [34] Design of a Deep Learning-Based Underwater Acoustic Sensor Transceiver
    Yen, Chih-Ta
    Wu, Tzu-Yen
    IEEE SENSORS JOURNAL, 2024, 24 (06) : 8694 - 8711
  • [35] Deep learning-based method for real-time spinach seedling health monitoring
    Xu, Yanlei
    Cong, Xue
    Zhai, Yuting
    Bai, YuKun
    Yang, Shuo
    Li, Jian
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [36] Machine Learning-Based Tools for Wind Turbine Acoustic Monitoring
    Ciaburro, Giuseppe
    Iannace, Gino
    Puyana-Romero, Virginia
    Trematerra, Amelia
    APPLIED SCIENCES-BASEL, 2021, 11 (14):
  • [37] A Study on Deep Learning-based Defect Analysis Using TOFD Signal on CRDM Nozzle
    Lee, Soomin
    Park, Junpil
    Kim, Hunhee
    Park, Jaeseok
    Lee, Jaesun
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2023, 43 (04) : 249 - 258
  • [38] Deep Learning-Based Signal Quality Assessment for Wearable ECGs
    Zhang, Xiangyu
    Li, Jianqing
    Cal, Zhipeng
    Zhao, Line
    Liu, Chengyu
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2022, 25 (05) : 41 - 52
  • [39] Deep Learning-Based Classification of Raw Hydroacoustic Signal: A Review
    Lin, Xu
    Dong, Ruichun
    Lv, Zhichao
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (01)
  • [40] A Deep Learning-Based Electromagnetic Signal for Earthquake Magnitude Prediction
    Bao, Zhenyu
    Zhao, Jingyu
    Huang, Pu
    Yong, Shanshan
    Wang, Xin'an
    SENSORS, 2021, 21 (13)