Asymptotics of commuting ℓ-tuples in symmetric groups and log-concavity

被引:0
|
作者
Bringmann, Kathrin [1 ]
Franke, Johann [1 ]
Heim, Bernhard [1 ]
机构
[1] Univ Cologne, Dept Math & Comp Sci, Div Math, Weyertal 86-90, D-50931 Cologne, Germany
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Generating functions; Log-concavity; Partition numbers; Symmetric group; NUMBER;
D O I
10.1007/s40993-024-00562-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by N-& ell;(n) the number of & ell;-tuples of elements in the symmetric group S-n with commuting components, normalized by the order of S-n. In this paper, we prove asymptotic formulas for N-& ell;(n). In addition, general criteria for log-concavity are shown, which can be applied to N-& ell;(n) among other examples. Moreover, we obtain a Bessenrodt-Ono type theorem which gives an inequality of the form c(a)c(b) > c(a + b) for certain families of sequences c(n).
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A bijection for tuples of commuting permutations and a log-concavity conjecture
    Abdesselam, Abdelmalek
    Brunialti, Pedro
    Doan, Tristan
    Velie, Philip
    RESEARCH IN NUMBER THEORY, 2024, 10 (02)
  • [2] On log-concavity of the number of orbits in commuting tuples of permutations
    Tripathi, Raghavendra
    RESEARCH IN NUMBER THEORY, 2024, 10 (04)
  • [3] Log-Concavity with Respect to the Number of Orbits for Infinite Tuples of Commuting Permutations
    Abdesselam, Abdelmalek
    ANNALS OF COMBINATORICS, 2024,
  • [4] Log-concavity and strong log-concavity: A review
    Saumard, Adrien
    Wellner, Jon A.
    STATISTICS SURVEYS, 2014, 8 : 45 - 114
  • [5] Nested Log-Concavity
    Llamas, Aurora
    Martinez-Bernal, Jose
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (05) : 1968 - 1981
  • [6] On Multiple and Infinite Log-Concavity
    Luis A. Medina
    Armin Straub
    Annals of Combinatorics, 2016, 20 : 125 - 138
  • [7] Log-concavity of the partition function
    DeSalvo, Stephen
    Pak, Igor
    RAMANUJAN JOURNAL, 2015, 38 (01): : 61 - 73
  • [8] Log-Concavity of the Alexander Polynomial
    Hafner, Elena S.
    Meszaros, Karola
    Vidinas, Alexander
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (13) : 10273 - 10284
  • [9] On the Log-Concavity of the Wright Function
    Ferreira, Rui A. C.
    Simon, Thomas
    CONSTRUCTIVE APPROXIMATION, 2024, 60 (02) : 309 - 338
  • [10] Negative Correlation and Log-Concavity
    Kahn, J.
    Neiman, M.
    RANDOM STRUCTURES & ALGORITHMS, 2010, 37 (03) : 367 - 388