共 50 条
Asymptotics of commuting ℓ-tuples in symmetric groups and log-concavity
被引:0
|作者:
Bringmann, Kathrin
[1
]
Franke, Johann
[1
]
Heim, Bernhard
[1
]
机构:
[1] Univ Cologne, Dept Math & Comp Sci, Div Math, Weyertal 86-90, D-50931 Cologne, Germany
基金:
欧洲研究理事会;
欧盟地平线“2020”;
关键词:
Generating functions;
Log-concavity;
Partition numbers;
Symmetric group;
NUMBER;
D O I:
10.1007/s40993-024-00562-1
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Denote by N-& ell;(n) the number of & ell;-tuples of elements in the symmetric group S-n with commuting components, normalized by the order of S-n. In this paper, we prove asymptotic formulas for N-& ell;(n). In addition, general criteria for log-concavity are shown, which can be applied to N-& ell;(n) among other examples. Moreover, we obtain a Bessenrodt-Ono type theorem which gives an inequality of the form c(a)c(b) > c(a + b) for certain families of sequences c(n).
引用
收藏
页数:19
相关论文