Asymptotics of commuting ℓ-tuples in symmetric groups and log-concavity

被引:0
|
作者
Bringmann, Kathrin [1 ]
Franke, Johann [1 ]
Heim, Bernhard [1 ]
机构
[1] Univ Cologne, Dept Math & Comp Sci, Div Math, Weyertal 86-90, D-50931 Cologne, Germany
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Generating functions; Log-concavity; Partition numbers; Symmetric group; NUMBER;
D O I
10.1007/s40993-024-00562-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by N-& ell;(n) the number of & ell;-tuples of elements in the symmetric group S-n with commuting components, normalized by the order of S-n. In this paper, we prove asymptotic formulas for N-& ell;(n). In addition, general criteria for log-concavity are shown, which can be applied to N-& ell;(n) among other examples. Moreover, we obtain a Bessenrodt-Ono type theorem which gives an inequality of the form c(a)c(b) > c(a + b) for certain families of sequences c(n).
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Infinite log-concavity: Developments and conjectures
    McNamara, Peter R. W.
    Sagan, Bruce E.
    ADVANCES IN APPLIED MATHEMATICS, 2010, 44 (01) : 1 - 15
  • [32] An Analogue of Mahonian Numbers and Log-Concavity
    Ghemit, Yousra
    Ahmia, Moussa
    ANNALS OF COMBINATORICS, 2023, 27 (04) : 895 - 916
  • [33] Schur positivity and Schur log-concavity
    Lam, Thomas
    Postnikov, Alexander
    Pylyavskyy, Pavlo
    AMERICAN JOURNAL OF MATHEMATICS, 2007, 129 (06) : 1611 - 1622
  • [34] On diffusion semigroups preserving the log-concavity
    Kolesnikov, AV
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (01) : 196 - 205
  • [35] A Restriction Estimate with a Log-Concavity Assumption
    Kyoungtae Moon
    Journal of Fourier Analysis and Applications, 2024, 30
  • [36] Linear transformations preserving log-concavity
    Wang, Y
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 359 : 161 - 167
  • [37] The ratio log-concavity of the Cohen numbers
    Liu, Eric H.
    Jin, Lily J.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [38] Preserving log-concavity and generalized triangles
    Ahmita, Moussa
    Belbachir, Hacene
    DIOPHANTINE ANALYSIS AND RELATED FIELDS 2010, 2010, 1264 : 81 - 89
  • [39] Assessing log-concavity of multivariate densities
    Hazelton, Martin L.
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (01) : 121 - 125
  • [40] LOG-CONCAVITY PROPERTIES OF MINKOWSKI VALUATIONS
    Berg, Astrid
    Parapatits, Lukas
    Schuster, Franz E.
    Weberndorfer, Manuel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (07) : 5245 - 5277