Optimized GPU Implementation of Grid Refinement in Lattice Boltzmann Method

被引:1
|
作者
Mahmoud, Ahmed H. [1 ,2 ]
Salehipour, Hesam [1 ]
Meneghin, Massimiliano [1 ]
机构
[1] Autodesk Res, Montreal, PQ, Canada
[2] Univ Calif Davis, Davis, CA USA
关键词
Parallel; GPU; Simulation; LBM; Boltzmann; Refinement;
D O I
10.1109/IPDPS57955.2024.00042
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Nonuniform grid refinement plays a fundamental role in simulating realistic flows with a multitude of length scales. We introduce the first GPU-optimized implementation of this technique in the context of the lattice Boltzmann method. Our approach focuses on enhancing GPU performance while minimizing memory access bottlenecks. We employ kernel fusion techniques to optimize memory access patterns, reduce synchronization overhead, and minimize kernel launch latencies. Additionally, our implementation ensures efficient memory management, resulting in lower memory requirements compared to the baseline LBM implementations that were designed for distributed systems. Our implementation allows simulations of unprecedented domain size (e.g., 1596 x 840 x 840) using a single A100-40 GB GPU thanks to enabling grid refinement capabilities on a single GPU. We validate our code against published experimental data. Our optimization improves the performance of the baseline algorithm by 1.3-2X. We also compare against state-of-the-art current solutions for grid refinement LBM and show an order of magnitude speedup.
引用
收藏
页码:398 / 407
页数:10
相关论文
共 50 条
  • [41] Physically based visual simulation of the Lattice Boltzmann method on the GPU: a survey
    Octavio Navarro-Hinojosa
    Sergio Ruiz-Loza
    Moisés Alencastre-Miranda
    The Journal of Supercomputing, 2018, 74 : 3441 - 3467
  • [42] An Efficient GPU Algorithm for Lattice Boltzmann Method on Sparse Complex Geometries
    Qin, Zhangrong
    Lu, Xusheng
    Lv, Long
    Tang, Zhongxiang
    Wen, Binghai
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2025, 36 (02) : 239 - 252
  • [43] A New Approach to Reduce Memory Consumption in Lattice Boltzmann Method on GPU
    Sheida, M.
    Taeibi-Rahni, M.
    Esfahanian, V.
    JOURNAL OF APPLIED FLUID MECHANICS, 2017, 10 (01) : 55 - 67
  • [44] LRnLA Lattice Boltzmann Method: A Performance Comparison of Implementations on GPU and CPU
    Levchenko, Vadim
    Zakirov, Andrey
    Perepelkina, Anastasia
    PARALLEL COMPUTATIONAL TECHNOLOGIES, PCT 2019, 2019, 1063 : 139 - 151
  • [45] Physically based visual simulation of the Lattice Boltzmann method on the GPU: a survey
    Navarro-Hinojosa, Octavio
    Ruiz-Loza, Sergio
    Alencastre-Miranda, Moises
    JOURNAL OF SUPERCOMPUTING, 2018, 74 (07): : 3441 - 3467
  • [46] Simulations of turbulent duct flow with lattice Boltzmann method on GPU cluster
    Lee, You-Hsun
    Huang, Li-Min
    Zou, You-Seng
    Huang, Shao-Ching
    Lin, Chao-An
    COMPUTERS & FLUIDS, 2018, 168 : 14 - 20
  • [47] Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster
    Xian, Wang
    Takayuki, Aoki
    PARALLEL COMPUTING, 2011, 37 (09) : 521 - 535
  • [48] GPU Accelerated Blood Flow Computation using the Lattice Boltzmann Method
    Nita, Cosmin
    Itu, Lucian Mihai
    Suciu, Constantin
    Suciu, Constantin
    2013 IEEE CONFERENCE ON HIGH PERFORMANCE EXTREME COMPUTING (HPEC), 2013,
  • [49] Energy-Efficient Implementation of the Lattice Boltzmann Method
    Vysocky, Ondrej
    Holzer, Markus
    Staffelbach, Gabriel
    Vavrik, Radim
    Riha, Lubomir
    ENERGIES, 2024, 17 (02)
  • [50] Validation of the lattice Boltzmann method implementation in a drip emitter
    Ma S.
    Wei Z.
    Ma R.
    Zhang Y.
    Ma, S. (mashengli1987@163.com), 1600, American Society of Agricultural and Biological Engineers (59): : 107 - 113