Optimized GPU Implementation of Grid Refinement in Lattice Boltzmann Method

被引:1
|
作者
Mahmoud, Ahmed H. [1 ,2 ]
Salehipour, Hesam [1 ]
Meneghin, Massimiliano [1 ]
机构
[1] Autodesk Res, Montreal, PQ, Canada
[2] Univ Calif Davis, Davis, CA USA
关键词
Parallel; GPU; Simulation; LBM; Boltzmann; Refinement;
D O I
10.1109/IPDPS57955.2024.00042
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Nonuniform grid refinement plays a fundamental role in simulating realistic flows with a multitude of length scales. We introduce the first GPU-optimized implementation of this technique in the context of the lattice Boltzmann method. Our approach focuses on enhancing GPU performance while minimizing memory access bottlenecks. We employ kernel fusion techniques to optimize memory access patterns, reduce synchronization overhead, and minimize kernel launch latencies. Additionally, our implementation ensures efficient memory management, resulting in lower memory requirements compared to the baseline LBM implementations that were designed for distributed systems. Our implementation allows simulations of unprecedented domain size (e.g., 1596 x 840 x 840) using a single A100-40 GB GPU thanks to enabling grid refinement capabilities on a single GPU. We validate our code against published experimental data. Our optimization improves the performance of the baseline algorithm by 1.3-2X. We also compare against state-of-the-art current solutions for grid refinement LBM and show an order of magnitude speedup.
引用
收藏
页码:398 / 407
页数:10
相关论文
共 50 条
  • [31] GPU accelerated lattice Boltzmann method in neutron kinetics problems
    Wang, Yahui
    Ma, Yu
    Xie, Ming
    ANNALS OF NUCLEAR ENERGY, 2019, 129 : 350 - 365
  • [32] RESEARCH ON THE LATTICE BOLTZMANN ALGORITHM FOR GRID REFINEMENT BASED ON NON-UNIFORM RECTANGULAR GRID
    An B.
    Meng X.
    Yang S.
    Sang W.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (10): : 2288 - 2296
  • [33] Hybrid method for wall local refinement in lattice Boltzmann method simulation
    Lyu, Changhao
    Liu, Peiqing
    Hu, Tianxiang
    Geng, Xin
    Qu, Qiuling
    Sun, Tao
    Akkermans, Rinie A. D.
    PHYSICS OF FLUIDS, 2023, 35 (01)
  • [34] Lattice-Boltzmann Solutions with Local Grid Refinement for Nasal Cavity Flows
    Lintermann, A.
    Eitel-Amor, G.
    Meinke, M.
    Schroeder, W.
    NEW RESULTS IN NUMERICAL AND EXPERIMENTAL FLUID MECHANICS VIII, 2013, 121 : 583 - 590
  • [35] LOCAL GRID REFINEMENT APPROACH FOR LATTICE BOLTZMANN METHOD: DISTRIBUTION FUNCTION CONVERSION BETWEEN COARSE AND FINE GRIDS
    Liu C.
    Li Z.
    Wang L.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (11): : 2480 - 2503
  • [36] A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows
    Fakhari, Abbas
    Geier, Martin
    Lee, Taehun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 315 : 434 - 457
  • [37] Dual Grid Lattice Boltzmann method for multiphase flows
    Rosales, C.
    Whyte, D. S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (09) : 1068 - 1084
  • [38] ICCM2016: The Implementation of Two-Dimensional Multi-Block Lattice Boltzmann Method on GPU
    Zhang, Ya
    Pan, Cuang
    Huang, Qiaogao
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2019, 16 (05)
  • [39] Cross-Platform GPU-Based Implementation of Lattice Boltzmann Method Solver Using ArrayFire Library
    Takac, Michal
    Petras, Ivo
    MATHEMATICS, 2021, 9 (15)
  • [40] Heterogeneous CPU plus GPU approaches for mesh refinement over Lattice-Boltzmann simulations
    Valero-Lara, Pedro
    Jansson, Johan
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, 29 (07):