Vegetation Water Content Retrieval from Spaceborne GNSS-R and Multi-Source Remote Sensing Data Using Ensemble Machine Learning Methods

被引:2
|
作者
Zhang, Yongfeng [1 ]
Bu, Jinwei [1 ]
Zuo, Xiaoqing [1 ]
Yu, Kegen [2 ]
Wang, Qiulan [1 ]
Huang, Weimin [3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Land Resources Engn, Kunming 650093, Yunnan, Peoples R China
[2] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
[3] Mem Univ Newfoundland, Dept Elect & Comp Engn, St John, NF A1B 3X5, Canada
基金
中国国家自然科学基金;
关键词
cyclone global navigation satellite system (CYGNSS); delay-Doppler map (DDM); global navigation satellite system reflectometry (GNSS-R); remote sensing data; VWC; ensemble machine learning; SOIL-MOISTURE; CYGNSS DATA; INDEXES; COVER; NDVI;
D O I
10.3390/rs16152793
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vegetation water content (VWC) is a crucial parameter for evaluating vegetation growth, climate change, natural disasters such as forest fires, and drought prediction. Spaceborne global navigation satellite system reflectometry (GNSS-R) has become a valuable tool for soil moisture (SM) and biomass remote sensing (RS) due to its higher spatial resolution compared with microwave measurements. Although previous studies have confirmed the enormous potential of spaceborne GNSS-R for vegetation monitoring, the utilization of this technology to fuse multiple RS parameters to retrieve VWC is not yet mature. For this purpose, this paper constructs a local high-spatiotemporal-resolution spaceborne GNSS-R VWC retrieval model that integrates key information, such as bistatic radar cross section (BRCS), effective scattering area, CYGNSS variables, and surface auxiliary parameters based on five ensemble machine learning (ML) algorithms (i.e., bagging tree (BT), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), random forest (RF), and light gradient boosting machine (LightGBM)). We extensively tested the performance of different models using SMAP ancillary data as validation data, and the results show that the root mean square errors (RMSEs) of the BT, XGBoost, RF, and LightGBM models in VWC retrieval are better than 0.50 kg/m2. Among them, the BT and RF models performed the best in localized VWC retrieval, with RMSE values of 0.50 kg/m2. Conversely, the XGBoost model exhibits the worst performance, with an RMSE of 0.85 kg/m2. In terms of RMSE, the RF model demonstrates improvements of 70.00%, 52.00%, and 32.00% over the XGBoost, LightGBM, and GBDT models, respectively.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Vegetation Water Content Retrieval and Application of Drought Monitoring Using Multi-Spectral Remote Sensing
    Wang Li-tao
    Wang Shi-xin
    Zhou Yi
    Liu Wen-liang
    Wang Fu-tao
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31 (10) : 2804 - 2808
  • [22] A novel agricultural drought index based on multi-source remote sensing data and interpretable machine learning
    Chen, Hao
    Yang, Ni
    Song, Xuanhua
    Lu, Chunhua
    Lu, Menglan
    Chen, Tan
    Deng, Shulin
    AGRICULTURAL WATER MANAGEMENT, 2025, 308
  • [23] Characterizing water body changes in Poyang lake using multi-source remote sensing data
    Wang, Wenyu
    Yang, Peng
    Xia, Jun
    Zhang, Shengqing
    Luo, Xiangang
    Hu, Sheng
    Li, Jiang
    Chen, Nengcheng
    Zhan, Chesheng
    ENVIRONMENTAL DEVELOPMENT, 2023, 48
  • [24] Evaluation of machine learning methods and multi-source remote sensing data combinations to construct forest above-ground biomass models
    Yan, Xingguang
    Li, Jing
    Smith, Andrew R.
    Yang, Di
    Ma, Tianyue
    Su, Yiting
    Shao, Jiahao
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (02) : 4471 - 4491
  • [25] Multi-source machine learning and spaceborne remote sensing data accurately predict three-dimensional soil moisture in an in-service uranium disposal cell
    Jarchow, Christopher J.
    Du, Jinyang
    Kimball, John S.
    Kuhlman, Alison
    Steckley, Deb
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 369
  • [26] Forest Biomass Inversion in Jilin Province of China Based on Machine Learning and Multi-source Remote Sensing Data
    Liu, He
    Gu, Lingjia
    Ren, Ruizhi
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 2711 - 2718
  • [27] Enhanced Crop Yield Forecasting Using Deep Reinforcement Learning and Multi-source Remote Sensing Data
    Yogita Rahulsing Chavan
    Brinthakumari Swamikan
    Megha Varun Gupta
    Sunil Bobade
    Anu Malhan
    Remote Sensing in Earth Systems Sciences, 2024, 7 (4) : 426 - 442
  • [28] Construction of a drought monitoring model using deep learning based on multi-source remote sensing data
    Shen, Runping
    Huang, Anqi
    Li, Bolun
    Guo, Jia
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 79 : 48 - 57
  • [29] PREDICTING CARBON STORAGE IN THE YUNNAN-KWEICHOW PLATEAU WETLANDS USING A FUSION OF MULTI-SOURCE REMOTE SENSING DATA AND MACHINE LEARNING
    Cai, Fangliang
    Tang, Bo-Hui
    Jiang, Xinran
    Huang, Liang
    Fu, Zhitao
    Fan, Dong
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 4806 - 4809
  • [30] Study on the retrieval of 3D atmospheric water vapor distribution using GNSS and RS multi-source data
    Zhang Wenyuan
    Zhang Shubi
    Zheng Nanshan
    Zhang Qiuzhao
    Ding Nan
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (06): : 1951 - 1964