Vegetation Water Content Retrieval from Spaceborne GNSS-R and Multi-Source Remote Sensing Data Using Ensemble Machine Learning Methods

被引:2
|
作者
Zhang, Yongfeng [1 ]
Bu, Jinwei [1 ]
Zuo, Xiaoqing [1 ]
Yu, Kegen [2 ]
Wang, Qiulan [1 ]
Huang, Weimin [3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Land Resources Engn, Kunming 650093, Yunnan, Peoples R China
[2] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
[3] Mem Univ Newfoundland, Dept Elect & Comp Engn, St John, NF A1B 3X5, Canada
基金
中国国家自然科学基金;
关键词
cyclone global navigation satellite system (CYGNSS); delay-Doppler map (DDM); global navigation satellite system reflectometry (GNSS-R); remote sensing data; VWC; ensemble machine learning; SOIL-MOISTURE; CYGNSS DATA; INDEXES; COVER; NDVI;
D O I
10.3390/rs16152793
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vegetation water content (VWC) is a crucial parameter for evaluating vegetation growth, climate change, natural disasters such as forest fires, and drought prediction. Spaceborne global navigation satellite system reflectometry (GNSS-R) has become a valuable tool for soil moisture (SM) and biomass remote sensing (RS) due to its higher spatial resolution compared with microwave measurements. Although previous studies have confirmed the enormous potential of spaceborne GNSS-R for vegetation monitoring, the utilization of this technology to fuse multiple RS parameters to retrieve VWC is not yet mature. For this purpose, this paper constructs a local high-spatiotemporal-resolution spaceborne GNSS-R VWC retrieval model that integrates key information, such as bistatic radar cross section (BRCS), effective scattering area, CYGNSS variables, and surface auxiliary parameters based on five ensemble machine learning (ML) algorithms (i.e., bagging tree (BT), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), random forest (RF), and light gradient boosting machine (LightGBM)). We extensively tested the performance of different models using SMAP ancillary data as validation data, and the results show that the root mean square errors (RMSEs) of the BT, XGBoost, RF, and LightGBM models in VWC retrieval are better than 0.50 kg/m2. Among them, the BT and RF models performed the best in localized VWC retrieval, with RMSE values of 0.50 kg/m2. Conversely, the XGBoost model exhibits the worst performance, with an RMSE of 0.85 kg/m2. In terms of RMSE, the RF model demonstrates improvements of 70.00%, 52.00%, and 32.00% over the XGBoost, LightGBM, and GBDT models, respectively.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Machine Learning Techniques for Fine Dead Fuel Load Estimation Using Multi-Source Remote Sensing Data
    D'Este, Marina
    Elia, Mario
    Giannico, Vincenzo
    Spano, Giuseppina
    Lafortezza, Raffaele
    Sanesi, Giovanni
    REMOTE SENSING, 2021, 13 (09)
  • [12] Daily Soil Moisture Retrieval by Fusing CYGNSS and Multi-Source Auxiliary Data Using Machine Learning Methods
    Yang, Ting
    Wang, Jundong
    Sun, Zhigang
    Li, Sen
    SENSORS, 2023, 23 (22)
  • [13] Ocean swell height estimation from spaceborne GNSS-R data using hybrid deep learning model
    Wang, Qiulan
    Bu, Jinwei
    Ni, Jun
    Li, Linghui
    Liu, Xinyu
    Huang, Weimin
    GPS SOLUTIONS, 2024, 28 (04)
  • [14] Estimation of PM2.5 Concentration across China Based on Multi-Source Remote Sensing Data and Machine Learning Methods
    Yang, Yujie
    Wang, Zhige
    Cao, Chunxiang
    Xu, Min
    Yang, Xinwei
    Wang, Kaimin
    Guo, Heyi
    Gao, Xiaotong
    Li, Jingbo
    Shi, Zhou
    REMOTE SENSING, 2024, 16 (03)
  • [15] High-Resolution Mapping of Maize in Mountainous Terrain Using Machine Learning and Multi-Source Remote Sensing Data
    Liu, Luying
    Yang, Jingyi
    Yin, Fang
    He, Linsen
    LAND, 2025, 14 (02)
  • [16] Urban river water quality monitoring based on self-optimizing machine learning method using multi-source remote sensing data
    Chen, Peng
    Wang, Biao
    Wu, Yanlan
    Wang, Qijun
    Huang, Zuoji
    Wang, Chunlin
    ECOLOGICAL INDICATORS, 2023, 146
  • [17] Retrieval of urban land surface component temperature using multi-source remote-sensing data
    郑文武
    曾永年
    Journal of Central South University, 2013, 20 (09) : 2489 - 2497
  • [18] Retrieval of urban land surface component temperature using multi-source remote-sensing data
    Zheng Wen-wu
    Zeng Yong-nian
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2013, 20 (09) : 2489 - 2497
  • [19] Retrieval of urban land surface component temperature using multi-source remote-sensing data
    Wen-wu Zheng
    Yong-nian Zeng
    Journal of Central South University, 2013, 20 : 2489 - 2497
  • [20] Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions
    Raza, Aamir
    Shahid, Muhammad Adnan
    Zaman, Muhammad
    Miao, Yuxin
    Huang, Yanbo
    Safdar, Muhammad
    Maqbool, Sheraz
    Muhammad, Nalain E.
    REMOTE SENSING, 2025, 17 (05)