Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns

被引:0
|
作者
Hu, Bowen [1 ]
Yu, Liyuan [1 ]
Mi, Xianzhen [1 ]
Xu, Fei [1 ,2 ]
Li, Shuchen [1 ,3 ]
Li, Wei [1 ]
Wei, Chao [1 ]
Zhang, Tao [1 ]
机构
[1] China Univ Min & Technol, State Key Lab Intelligent Construction & Hlth Oper, Xuzhou 221116, Peoples R China
[2] Shijiazhuang Tiedao Univ, Key Lab Large Struct Hlth Monitoring & Control, Shijiazhuang 050043, Peoples R China
[3] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Peoples R China
基金
中国博士后科学基金;
关键词
Underground hydrogen storage; Compressed air energy storage; Mechanical response; Thermodynamic response; Lined rock caverns; PRESSURE VARIATIONS; TEMPERATURE; LEAKAGE; MODEL; WIND; CAES;
D O I
10.1016/j.ijmst.2024.04.005
中图分类号
TD [矿业工程];
学科分类号
0819 ;
摘要
Underground hydrogen storage (UHS) and compressed air energy storage (CAES) are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power. Therefore, it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes. This study employs a multi-physical coupling model to compare the operations of CAES and UHS, integrating gas thermodynamics within caverns, thermal conduction, and mechanical deformation around rock caverns. Gas thermodynamic responses are validated using additional simulations and the field test data. Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes. Hydrogen reaches higher temperature and pressure following gas charging stage compared to air, and the ideal gas assumption may lead to overestimation of gas temperature and pressure. Unlike steel lining of CAES, the sealing layer (fibre-reinforced plastic FRP) in UHS is prone to deformation but can effectively mitigates stress in the sealing layer. In CAES, the first principal stress on the surface of the sealing layer and concrete lining is tensile stress, whereas UHS exhibits compressive stress in the same areas. Our present research can provide references for the selection of energy storage methods. (c) 2024 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:531 / 543
页数:13
相关论文
共 50 条
  • [41] CYCLIC THERMO-MECHANICAL ANALYSIS OF WELLBORE IN AN UNDERGROUND COMPRESSED AIR ENERGY STORAGE CAVERN
    Mohanto, S.
    Singh, K.
    Chakraborty, T.
    Basu, D.
    ADVANCES IN UNDERGROUND SPACE DEVELOPMENT, 2013, : 1386 - 1397
  • [42] Pilot test of compressed air storage in underground rock cavern
    Song, W. K.
    ROCK MECHANICS AND ROCK ENGINEERING: FROM THE PAST TO THE FUTURE, VOL 2, 2016, : 1017 - 1021
  • [43] Thermodynamic analysis of storage cavern in advanced adiabatic compressed air energy storage system
    Li, Xue-Mei
    Yang, Ke
    Zhang, Yuan
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2015, 36 (03): : 513 - 516
  • [44] MECHANICAL ENERGY STORAGE SYSTEMS: COMPRESSED AIR AND UNDERGROUND PUMPED HYDRO.
    Chiu, H.H.
    L.W., Rodgers
    Z.A., Saleem
    R.K., Ahluwalia
    G.T., Kartsounes
    F.W., Ahrens
    Journal of energy, 1979, 3 (03): : 131 - 139
  • [45] Coupled thermodynamic and thermomechanical modelling for compressed air energy storage in underground mine tunnels
    Miao, Xiuxiu
    Zhang, Kai
    Wang, Jianguo
    Gao, Yanan
    Wang, Leiming
    Guo, Qinghua
    Chen, Qingliang
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2024, 176
  • [46] ACCUMULATION OF ENERGY BY UNDERGROUND-STORAGE OF COMPRESSED AIR
    NOE, JM
    SOUQUET, G
    ANNALES DES MINES, 1978, 184 (04): : 29 - 34
  • [47] Measurements and analysis of rock mass responses around a pilot lined rock cavern for LNG underground storage
    Lee, Dae-Hyuck
    Lee, Hee-Suk
    Kim, Ho-Yeong
    Gatelier, Nicolas
    EUROCK 2005: IMPACT OF HUMAN ACTIVITY ON THE GEOLOGICAL ENVIRONMENT, 2005, : 287 - 292
  • [48] The thermodynamic effect of thermal energy storage on compressed air energy storage system
    Zhang, Yuan
    Yang, Ke
    Li, Xuemei
    Xu, Jianzhong
    RENEWABLE ENERGY, 2013, 50 : 227 - 235
  • [49] Analytical methods for thermo-mechanical coupling of artificial caverns of the compressed air energy storage
    Jia, Ning
    Liu, Shun
    Wang, Hong-bo
    ROCK AND SOIL MECHANICS, 2024, 45 (08) : 2263 - 2278
  • [50] Thermodynamic analysis of natural gas/hydrogen-fueled compressed air energy storage system
    Ma, Ning
    Zhao, Pan
    Liu, Aijie
    Xu, Wenpan
    Wang, Jiangfeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 68 : 227 - 243