Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns

被引:0
|
作者
Hu, Bowen [1 ]
Yu, Liyuan [1 ]
Mi, Xianzhen [1 ]
Xu, Fei [1 ,2 ]
Li, Shuchen [1 ,3 ]
Li, Wei [1 ]
Wei, Chao [1 ]
Zhang, Tao [1 ]
机构
[1] China Univ Min & Technol, State Key Lab Intelligent Construction & Hlth Oper, Xuzhou 221116, Peoples R China
[2] Shijiazhuang Tiedao Univ, Key Lab Large Struct Hlth Monitoring & Control, Shijiazhuang 050043, Peoples R China
[3] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Peoples R China
基金
中国博士后科学基金;
关键词
Underground hydrogen storage; Compressed air energy storage; Mechanical response; Thermodynamic response; Lined rock caverns; PRESSURE VARIATIONS; TEMPERATURE; LEAKAGE; MODEL; WIND; CAES;
D O I
10.1016/j.ijmst.2024.04.005
中图分类号
TD [矿业工程];
学科分类号
0819 ;
摘要
Underground hydrogen storage (UHS) and compressed air energy storage (CAES) are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power. Therefore, it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes. This study employs a multi-physical coupling model to compare the operations of CAES and UHS, integrating gas thermodynamics within caverns, thermal conduction, and mechanical deformation around rock caverns. Gas thermodynamic responses are validated using additional simulations and the field test data. Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes. Hydrogen reaches higher temperature and pressure following gas charging stage compared to air, and the ideal gas assumption may lead to overestimation of gas temperature and pressure. Unlike steel lining of CAES, the sealing layer (fibre-reinforced plastic FRP) in UHS is prone to deformation but can effectively mitigates stress in the sealing layer. In CAES, the first principal stress on the surface of the sealing layer and concrete lining is tensile stress, whereas UHS exhibits compressive stress in the same areas. Our present research can provide references for the selection of energy storage methods. (c) 2024 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:531 / 543
页数:13
相关论文
共 50 条
  • [31] Feasibility Analysis of Compressed Air Energy Storage in Salt Caverns in the Yunying Area
    Mou, Jinrong
    Shang, Haoliang
    Ji, Wendong
    Wan, Jifang
    Xing, Taigao
    Ma, Hongling
    Peng, Wei
    ENERGIES, 2023, 16 (20)
  • [32] Airtightness evaluation of compressed air energy storage (CAES) salt caverns in bedded rock salt
    Fang, Jiangyu
    Ma, Hongling
    Yang, Chunhe
    Li, Hang
    Zeng, Zhen
    Zhu, Shijie
    Wang, Xuan
    Nong, Xiaoli
    Journal of Energy Storage, 2024, 102
  • [33] ON THE FORMULATION OF STABILITY AND DESIGN CRITERIA FOR COMPRESSED AIR ENERGY STORAGE IN HARD ROCK CAVERNS.
    Gnirk, P.F.
    Fossum, A.F.
    Proceedings of the Intersociety Energy Conversion Engineering Conference, 1979, : 429 - 440
  • [34] Influence of spatial variability in surrounding rock on fracture propagation in compressed air energy storage caverns
    He, X. H.
    Zhou, S. W.
    Xu, Y. J.
    Qing, S. K.
    GEOSHANGHAI 2024 INTERNATIONAL CONFERENCE, VOL 6, 2024, 1335
  • [35] A nonlinear damage constitutive model applicable to the surrounding rock of compressed air energy storage caverns
    Zhu, Kaiyuan
    Sun, Guanhua
    Shi, Lu
    Lin, Shan
    Yu, Xianyang
    Journal of Energy Storage, 2025, 107
  • [36] Compressed air energy storage in hard rock caverns:airtight performance,thermomechanical behavior and stability
    Zhang, Guohua
    Wang, Xinjin
    Xiang, Yue
    Pan, Jia
    Xiong, Feng
    Hua, Dongjie
    Tang, Zhicheng
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2024, 43 (11): : 2601 - 2626
  • [38] Stability and serviceability of underground energy storage caverns in rock salt subjected to mechanical cyclic loading
    Khaledi, Kavan
    Mahmoudi, Elham
    Datcheva, Maria
    Schanz, Tom
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2016, 86 : 115 - 131
  • [39] Limit equilibrium method for calculating the safe burial depth of underground caverns in compressed air energy storage
    Sun G.
    Wang Z.
    Wang J.
    Yi Q.
    Ma H.
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2023, 56 : 65 - 77
  • [40] Cyclic Thermo-Mechanical Analysis of Wellbore in Underground Compressed Air Energy Storage Cavern
    Mohanto S.
    Singh K.
    Chakraborty T.
    Basu D.
    Geotechnical and Geological Engineering, 2014, 32 (03) : 601 - 616