Cost-Effective Layered Oxide - Olivine Blend Cathodes for High-Rate Pulse Power Lithium-Ion Batteries

被引:2
|
作者
Lee, Steven [1 ,2 ]
Scanlan, Kevin [1 ,2 ]
Reed, Seth [1 ,2 ]
Manthiram, Arumugam [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
关键词
blend cathode; kinetics; layered cathode; lithium-ion batteries; olivine cathode; POSITIVE ELECTRODE MATERIALS; THERMAL-STABILITY; COBALT;
D O I
10.1002/aenm.202403002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sustainability and supply-chain concerns require lithium-ion batteries (LIBs) free from critical minerals, such as nickel and cobalt. While recent advances provide encouraging signs that cobalt can be removed, the question remains how much Ni can be removed from Co-free layered oxide cathodes before sacrificing critical performance metrics. This study highlights the effect of reducing Ni by benchmarking several Co-free cathodes with decreasing Ni content. Keeping the energy density the same by increasing the charge voltage, cathodes below 80% Ni content exhibit worsened capacity fade due to increasing oxygen release and electrolyte decomposition. Charge transfer and diffusion kinetics are also hindered with increasing Mn content and exacerbated by resistive surface phases formed at high voltages, rendering lower-Ni, Co-free cathodes less competitive than high-Ni cathodes for high energy and power applications. It is demonstrated blending layered oxide with olivine as an effective alternative to deliver energy density and cycling stability comparable to lower-Ni cathodes with moderate charging voltages. Blending with 30 wt% olivine LiMn0.5Fe0.5PO4 (LMFP) virtually eliminates the diffusion limitation of layered oxides at low state-of-charge, with enhanced pulse power characteristics rivaling the high-Ni counterparts. Cathode blending can further reduce the overall Ni content and cost without the performance limitations of lower-Ni, Co-free cathodes. A side-by-side performance and cost assessment of cobalt-free LiNixMnyAlzO2 (NMA) cathodes reveals the nickel reduction limit and the associated performance limitations of lower-nickel (approximate to 70%) cathodes. Blending layered oxide with olivine LiFePO4 (LFP) or LiMn0.5Fe0.5PO4 (LMFP) not only delivers similar energy density and reduces Ni content further, but also provides synergistic pulse power characteristics superior to lower-Ni cathodes. image
引用
收藏
页数:14
相关论文
共 50 条
  • [31] High rate and thermally stable Mn-rich concentration-gradient layered oxide microsphere cathodes for lithium-ion batteries
    Huang, Zhen-Dong
    Zhang, Kun
    Zhang, Ting-Ting
    Liu, Rui-Qing
    Lin, Xiu-Jing
    Li, Yi
    Masese, Titus
    Liu, Xianming
    Feng, Xiao-Miao
    Ma, Yan-Wen
    ENERGY STORAGE MATERIALS, 2016, 5 : 205 - 213
  • [32] Effect of Residual Lithium Rearrangement on Ni-rich Layered Oxide Cathodes for Lithium-Ion Batteries
    Park, Jun-Ho
    Choi, Byungjin
    Kang, Yoon-Sok
    Park, Seong Yong
    Yun, Dong Jin
    Park, Insun
    Ha Shim, Jae
    Park, Jin-Hwan
    Han, Heung Nam
    Park, Kwangjin
    ENERGY TECHNOLOGY, 2018, 6 (07) : 1361 - 1369
  • [33] MOF composite fibrous separators for high-rate lithium-ion batteries
    Huang, Ding
    Liang, Cong
    Chen, Lining
    Tang, Mi
    Zheng, Zijian
    Wang, Zhengbang
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (09) : 5868 - 5877
  • [34] MOF composite fibrous separators for high-rate lithium-ion batteries
    Ding Huang
    Cong Liang
    Lining Chen
    Mi Tang
    Zijian Zheng
    Zhengbang Wang
    Journal of Materials Science, 2021, 56 : 5868 - 5877
  • [35] In situ fabrication of lithium titanium oxide by microwave-assisted alkalization for high-rate lithium-ion batteries
    Kim, Hyun-Kyung
    Jegal, Jong-Pil
    Kim, Ji-Young
    Yoon, Seung-Beom
    Roh, Kwang Chul
    Kim, Kwang-Bum
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (47) : 14849 - 14852
  • [36] HIGH POWER PERFORMANCE OF MULTICOMPONENT OLIVINE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES
    Tan, Zhuo
    Gao, Ping
    Cheng, Fuquan
    Luo, Hongjun
    Chen, Jitao
    Zhou, Henghui
    Tan, Songting
    FUNCTIONAL MATERIALS LETTERS, 2011, 4 (03) : 299 - 303
  • [37] Challenges and prospects of high-nickel layered oxide cathodes for next-generation lithium-ion batteries
    Manthiram, Arumugam
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [38] Tuning Dopant Distribution for Stabilizing the Surface of High-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries
    Liu, Chen
    Cui, Zehao
    Manthiram, Arumugam
    ADVANCED ENERGY MATERIALS, 2024, 14 (03)
  • [39] Ethylene Carbonate-Free Electrolytes for High-Nickel Layered Oxide Cathodes in Lithium-Ion Batteries
    Li, Wangda
    Dolocan, Andrei
    Li, Jianyu
    Xie, Qiang
    Manthiram, Arumugam
    ADVANCED ENERGY MATERIALS, 2019, 9 (29)
  • [40] Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries
    Qiu, Jingxia
    Lai, Chao
    Gray, Evan
    Li, Sheng
    Qiu, Siyao
    Strounina, Ekaterina
    Sun, Chenghua
    Zhao, Huijun
    Zhang, Shanqing
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (18) : 6353 - 6358