Microstructure and high-temperature phase stability of Co-precipitation (Mg0.2Al0.2Ce0.2Y0.2Zr0.2)O1.6 high entropy ceramics powders

被引:0
|
作者
Ma, Xixi [1 ]
Gong, Jianping [1 ]
Wang, Jichun [1 ]
Li, Ang [2 ]
Gao, Pengfei [1 ]
Wang, Xiaoming [3 ]
Yang, Baijun [4 ]
机构
[1] Southwest Univ Sci & Technol, Sch Mat & Chem, Mianyang 621010, Peoples R China
[2] Cent China Normal Univ, Natl Engn Lab Educ Big Data, Wuhan 430079, Peoples R China
[3] Army Acad Armored Forces, Natl Key Lab Remfg, Beijing 100072, Peoples R China
[4] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
High entropy ceramics; Powder; Co-precipitation; Phase stability; High temperature; THERMAL-CONDUCTIVITY;
D O I
10.1016/j.ceramint.2024.07.332
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
(Mg0.2Al0.2Ce0.2Y0.2Zr0.2)O1.6 high entropy ceramics powders have been prepared by co-precipitation method with two calcination temperatures (1000 degrees C and 1200 degrees C). The microstructure, phase composition and phase stability after repeated calcination at 1400 degrees C with various times of the powders have been investigated. The powder calcined at 1200 degrees C has the better crystallinity and the stronger diffraction peak of t-ZrO2 phase at room temperature. The existence of Ce4+ and Y3+ with large radius in the ZrO2 lattice can enhance the tetragonality of the powders. The Mg2+ and Al3+ with small radii can exist in the lattice gap of ZrO2 or replace the position of Zr4+, causing lattice contraction, offsetting the lattice expansion which caused by Ce4+ and Y3+, and reducing the negative effects induced by the large ion doping. Thus, (Mg0.2Al0.2Ce0.2Y0.2Zr0.2)O1.6 has a good phase stability after repeated calcination at 1400 degrees C for 80h.
引用
收藏
页码:40181 / 40184
页数:4
相关论文
共 50 条
  • [31] Textured and toughened high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCw ceramics
    Luo, Si-Chun
    Guo, Wei-Ming
    Zhou, Yu-Zhang
    Plucknett, Kevin
    Lin, Hua-Tay
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 94 : 99 - 103
  • [32] High entropy(Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12:A novel high temperature stable thermal barrier material
    Heng Chen
    Zifan Zhao
    Huimin Xiang
    Fu-Zhi Dai
    Wei Xu
    Kuang Sun
    Jiachen Liu
    Yanchun Zhou
    Journal of Materials Science & Technology, 2020, 48 (13) : 57 - 62
  • [33] High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material
    Chen, Heng
    Zhao, Zifan
    Xiang, Huimin
    Dai, Fu-Zhi
    Xu, Wei
    Sun, Kuang
    Liu, Jiachen
    Zhou, Yanchun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 48 (48): : 57 - 62
  • [34] High-entropy chromate (La 0.2 Nd 0.2 Sm 0.2 Eu 0.2 Gd 0.2 )CrO 3 for high-temperature NTC thermistors
    Chen, Xiaoyi
    Li, Xiaohui
    Chen, Zhaoyang
    Li, Fuming
    Kong, Wenwen
    Chang, Aimin
    Gao, Bo
    SCRIPTA MATERIALIA, 2024, 246
  • [35] Is configurational entropy the main stabilizing term in rock-salt Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high entropy oxide?
    Martina Fracchia
    Mauro Coduri
    Maela Manzoli
    Paolo Ghigna
    Umberto Anselmi Tamburini
    Nature Communications, 13
  • [36] Textured and toughened high-entropy(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCw ceramics
    Si-Chun Luo
    Wei-Ming Guo
    Yu-Zhang Zhou
    Kevin Plucknett
    Hua-Tay Lin
    JournalofMaterialsScience&Technology, 2021, 94 (35) : 99 - 103
  • [37] High entropy (Hf0.2Zr0.2Ta0.2Ti0.2Nb0.2)B2 ceramics and its tribological properties
    Qureshi, Tabrez
    Khan, Mohammad Mohsin
    Pali, Harveer Singh
    CERAMICS INTERNATIONAL, 2025, 51 (05) : 6379 - 6396
  • [38] Novel high-entropy BaCo0.2Zn0.2Ga0.2Zr0.2Y0.2O3-δ cathode for proton ceramic fuel cells
    Yang, Chenghao
    Li, Jin
    Hu, Shiming
    Pu, Jian
    Chi, Bo
    CERAMICS INTERNATIONAL, 2023, 49 (23) : 38331 - 38338
  • [39] Oxidation behavior of (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C-xSiC ceramics at high temperature
    Wang, Haoxuan
    Cao, Yejie
    Liu, Wen
    Wang, Yiguang
    CERAMICS INTERNATIONAL, 2020, 46 (08) : 11160 - 11168
  • [40] Fabrication of textured (Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2 high-entropy ceramics
    Zhang, Yan
    Sun, Shi-Kuan
    Guo, Wei-Ming
    Zhang, Wei
    Xu, Liang
    Yuan, Jin-Hao
    Guan, Di-Kai
    Wang, Wei
    You, Yang
    Lin, Hua-Tay
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (01) : 1015 - 1019