Enhancing Argument Generation Using Bayesian Networks

被引:0
|
作者
Cao, Yuan [1 ,4 ]
Fuchs, Rafael [2 ,3 ]
Keshmirian, Anita [1 ,2 ,5 ]
机构
[1] Fraunhofer Inst Kognit Syst IKS, Munich, Germany
[2] Munich Ctr Math Philosophy MCMP LMU, Munich, Germany
[3] Grad Sch Syst Neurosci GSN LMU, Munich, Germany
[4] Tech Univ Munich, Munich, Germany
[5] Forward Coll, Berlin, Germany
来源
关键词
Argument Strength; Bayesian Belief Network; Argument Generation;
D O I
10.1007/978-3-031-63536-6_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we examine algorithms that utilize factor graphs from Bayesian Belief Networks to generate and evaluate arguments. We assess their strengths and weaknesses, which leads to the creation of our improved algorithm that rectifies the issues that we identified. Our approach includes applying the original and modified algorithms to previously known networks to pose challenges in generating robust arguments for humans and computers. Our findings reveal significant improvements in the creation of more robust arguments. Moreover, we delve into the dynamics of argument interaction, offering detailed insight into the algorithms' practical efficacy.
引用
收藏
页码:253 / 265
页数:13
相关论文
共 50 条
  • [41] Comparison of spectra using a Bayesian approach. An argument using oil spills as an example
    Li, JF
    Hibbert, DB
    Fuller, S
    Cattle, J
    Way, CP
    ANALYTICAL CHEMISTRY, 2005, 77 (02) : 639 - 644
  • [42] Building classifiers using Bayesian networks
    Friedman, N
    Goldszmidt, M
    PROCEEDINGS OF THE THIRTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE, VOLS 1 AND 2, 1996, : 1277 - 1284
  • [43] Diversifying the Storytelling Using Bayesian Networks
    Wu, Wenyun
    Ma, Biyang
    Zhang, Shaoxin
    Zeng, Yifeng
    Mao, Hua
    AGENTS AND DATA MINING INTERACTION (ADMI 2014), 2015, 9145 : 104 - 113
  • [44] Image interpretation using Bayesian networks
    Kumar, VP
    Desai, UB
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (01) : 74 - 77
  • [45] Modeling affordances using Bayesian networks
    Montesano, Luis
    Lopes, Manuel
    Bernardino, Alexandre
    Santos-Victor, Jose
    2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, 2007, : 4108 - 4113
  • [46] Combating discrimination using Bayesian networks
    Mancuhan K.
    Clifton C.
    Mancuhan, K. (kmancuha@purdue.edu), 1600, Kluwer Academic Publishers (22): : 211 - 238
  • [47] Printer troubleshooting using Bayesian networks
    Skaanning, C
    Jensen, FV
    Kjærulff, U
    INTELLIGENT PROBLEM SOLVING: METHODOLOGIES AND APPROACHES, PRODEEDINGS, 2000, 1821 : 367 - 379
  • [48] Financial analysis using Bayesian networks
    Gemela, J
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2001, 17 (01) : 57 - 67
  • [49] Reforestation planning using Bayesian networks
    Ordonez Galan, C.
    Matias, J. M.
    Rivas, T.
    Bastante, F. G.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2009, 24 (11) : 1285 - 1292
  • [50] Information retrieval using Bayesian networks
    Neuman, L
    Kozlowski, J
    Zgrzywa, A
    COMPUTATIONAL SCIENCE - ICCS 2004, PT 3, PROCEEDINGS, 2004, 3038 : 521 - 528