Enhancing Argument Generation Using Bayesian Networks

被引:0
|
作者
Cao, Yuan [1 ,4 ]
Fuchs, Rafael [2 ,3 ]
Keshmirian, Anita [1 ,2 ,5 ]
机构
[1] Fraunhofer Inst Kognit Syst IKS, Munich, Germany
[2] Munich Ctr Math Philosophy MCMP LMU, Munich, Germany
[3] Grad Sch Syst Neurosci GSN LMU, Munich, Germany
[4] Tech Univ Munich, Munich, Germany
[5] Forward Coll, Berlin, Germany
来源
关键词
Argument Strength; Bayesian Belief Network; Argument Generation;
D O I
10.1007/978-3-031-63536-6_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we examine algorithms that utilize factor graphs from Bayesian Belief Networks to generate and evaluate arguments. We assess their strengths and weaknesses, which leads to the creation of our improved algorithm that rectifies the issues that we identified. Our approach includes applying the original and modified algorithms to previously known networks to pose challenges in generating robust arguments for humans and computers. Our findings reveal significant improvements in the creation of more robust arguments. Moreover, we delve into the dynamics of argument interaction, offering detailed insight into the algorithms' practical efficacy.
引用
收藏
页码:253 / 265
页数:13
相关论文
共 50 条
  • [21] ARGUMENT STRUCTURES AND ARGUMENT GENERATION
    VOSS, JF
    SCHOOLER, T
    KENNET, J
    WOLFE, C
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1990, 28 (06) : 527 - 527
  • [22] A Tool for the Generation of Arguments from Bayesian Networks
    Timmer, Sjoerd T.
    Meyer, John-Jules Ch.
    Prakken, Henry
    Renooij, Silja
    Verheij, Bart
    COMPUTATIONAL MODELS OF ARGUMENT, 2014, 266 : 479 - 480
  • [23] Ontology-based generation of Bayesian networks
    Fenz, Stefan
    Tjoa, A. Min
    Hudec, Marcus
    CISIS: 2009 INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT AND SOFTWARE INTENSIVE SYSTEMS, VOLS 1 AND 2, 2009, : 712 - +
  • [24] Exploring Argument Mining and Bayesian Networks for Assessing Topics for City Project Proposals
    Weidl, Galia
    Berres, Stefan
    Madsen, Anders L.
    Daxenberger, Johannes
    Aulbach, Annegret
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, 2024, 246 : 438 - 451
  • [25] Toward System Architecture Generation and Performances Assessment Under Uncertainty Using Bayesian Networks
    Moullec, Marie-Lise
    Bouissou, Marc
    Jankovic, Marija
    Bocquet, Jean-Claude
    Requillard, Francois
    Maas, Olivier
    Forgeot, Olivier
    JOURNAL OF MECHANICAL DESIGN, 2013, 135 (04)
  • [26] Third generation algae biofuels in Italy by 2030: A scenario analysis using Bayesian networks
    Gambelli, Danilo
    Alberti, Francesca
    Solfanelli, Francesco
    Vairo, Daniela
    Zanoli, Raffaele
    ENERGY POLICY, 2017, 103 : 165 - 178
  • [27] A Bayesian Approach to the Simulation Argument
    Kipping, David
    UNIVERSE, 2020, 6 (08)
  • [28] Gwiazda on the Bayesian Argument for God
    Swinburne, Richard
    PHILOSOPHIA, 2011, 39 (02) : 393 - 396
  • [29] Gwiazda on the Bayesian Argument for God
    Richard Swinburne
    Philosophia, 2011, 39 : 393 - 396
  • [30] Enhancing Next-Generation Wireless Networks Using Preemptive Energy Conservation Technique
    Selvaraj, Jagadeesh
    Nakeeb, Noor Alleema
    Cho, Jaehyuk
    Easwaramoorthy, Sathishkumar Veerappampalayam
    IEEE ACCESS, 2024, 12 : 169328 - 169343