Nonlocal symmetries of two 2-component equations of Camassa-Holm type

被引:0
|
作者
Li, Ziqi [1 ]
Tian, Kai [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian operators; finite symmetry transformations; B & auml; cklund transformations; SHALLOW-WATER EQUATION; GEODESIC-FLOW; INTEGRABILITY;
D O I
10.1134/S0040577924090046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-component Camassa-Holm equation, as well as a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-component generalization of the modified Camassa-Holm equation, nonlocal infinitesimal symmetries quadratically dependent on eigenfunctions of linear spectral problems are constructed from functional gradients of spectral parameters. With appropriate pseudopotentials, these nonlocal infinitesimal symmetries are prolonged to enlarged systems, and then explicitly integrated to generate symmetry transformations in finite form for the enlarged systems. As implementations of these finite symmetry transformations, some kinds of nontrivial solutions and B & auml;cklund transformations are derived for both equations.
引用
收藏
页码:1471 / 1485
页数:15
相关论文
共 50 条