Addressing electrode passivation in lithium-sulfur batteries by site-selective morphology-controlled Li2S formation

被引:0
|
作者
Kim, Ilju [1 ]
Jung, Jinkwan [1 ]
Kim, Sejin [1 ]
Cho, Hannah [1 ]
Chu, Hyunwon [1 ]
Jo, Wonhee [1 ]
Shin, Dongjae [1 ]
Kwon, Hyeokjin [1 ]
Kim, Hee-Tak [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
electrode passivation; high-donor-number electrolyte; Li2S deposition; lithium-sulfur battery; tip effect; CATHODE; ARRAYS;
D O I
10.1002/eom2.12483
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sulfur utilization efficiency of lithium-sulfur batteries is often limited by the uncontrolled electrodeposition of the insulating Li2S and the resulting electrode passivation. Herein, purposeful electrode and electrolyte design is used to realize site-selective three-dimensional (3D) Li2S electrodeposition and thus mitigate the above problem. Site-selective Li2S nucleation is induced at the tips of CoP nanoneedles grown on a carbon cloth electrode, and the 3D growth of Li2S at these tips without the passivation of the inner part is achieved using a LiBr-containing high-donor-number electrolyte. The controlled Li2S morphology is rationalized by considering the tip effect, the energy of Li2S binding on the electrode surface, and the solubility of Li2S in the electrolyte. Owing to the suppressed electrode passivation, CoP nanoneedle-decorated carbon cloth electrode and LiBr-containing electrolyte deliver a capacity of >1400 mAh g(s)(-1) at a current density of 0.33 A g(s)(-1). Thus, this work paves the way for the active control of Li2S morphology for high-performance lithium-sulfur batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Full Dissolution of the Whole Lithium Sulfide Family (Li2S8 to Li2S) in a Safe Eutectic Solvent for Rechargeable Lithium-Sulfur Batteries
    Cheng, Qian
    Xu, Weiheng
    Qin, Shiyi
    Das, Subhabrata
    Jin, Tianwei
    Li, Aijun
    Li, Alex Ceng
    Qie, Boyu
    Yao, Pengcheng
    Zhai, Haowei
    Shi, Changmin
    Yong, Xin
    Yang, Yuan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (17) : 5557 - 5561
  • [42] Unraveling the Li2S Deposition Process on a Polished Graphite Cathode for Enhancing Discharge Capacity of Lithium-Sulfur Batteries
    Shen, Chao
    Andrei, Petru
    Zheng, Jim P.
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) : 3860 - 3868
  • [43] Activation of Li2S Cathode by an Organoselenide Salt Mediator for All-Solid-State Lithium-Sulfur Batteries
    Fan, Junsheng
    Sun, Wenxuan
    Fu, Yongzhu
    Guo, Wei
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (45)
  • [44] Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries
    Wu, Min
    Cui, Yi
    Fu, Yongzhu
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (38) : 21479 - 21486
  • [45] Nano-compacted Li2S/Graphene Composite Cathode for High-Energy Lithium-Sulfur Batteries
    Hwang, Jang-Yeon
    Shin, Subeom
    Yoon, Chong S.
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2019, 4 (12) : 2787 - 2795
  • [46] Toward High Performance Lithium-Sulfur Batteries Based on Li2S Cathodes and Beyond: Status, Challenges, and Perspectives
    Su, Dawei
    Zhou, Dong
    Wang, Chengyin
    Wang, Guoxiu
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (38)
  • [47] Li2S Film Formation on Lithium Anode Surface of Li-S batteries
    Liu, Zhixiao
    Bertolin, Samuel
    Balbuena, Perla B.
    Mukherjee, Partha P.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (07) : 4700 - 4708
  • [48] Morphology Control of Li2S Deposition via Geometrical Effect of Cobalt-Edged Nickel Alloy to Improve Performance of Lithium-Sulfur Batteries
    Jiang, Yicheng
    Liu, Sheng
    Gao, Xueping
    Li, Guoran
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (45)
  • [49] Electrocatalysis of Ruthenium Nanoparticles-Decorated Hollow Carbon Spheres for the Conversion of Li2S2/Li2S in Lithium-Sulfur Batteries
    Pongilat, Remith
    Nallathamby, Kalaiselvi
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (45) : 38853 - 38861
  • [50] Xanthate-Mediated Oxidation of Li2S as the Lithium-Containing Cathode in Lithium-Sulfur Batteries with Extremely Low Overpotential
    Wu, Jialing
    Ye, Hualin
    Hu, Yongpan
    Huang, Wei
    Zhu, Xinxin
    Chang, Wanwan
    Li, Ya
    Pan, Baojun
    Li, Yanguang
    Lu, Jun
    ADVANCED MATERIALS, 2024, 36 (48)