Unraveling the Li2S Deposition Process on a Polished Graphite Cathode for Enhancing Discharge Capacity of Lithium-Sulfur Batteries

被引:15
|
作者
Shen, Chao [1 ,2 ,3 ]
Andrei, Petru [1 ,2 ,3 ]
Zheng, Jim P. [1 ,2 ,3 ,4 ]
机构
[1] Florida A&M Univ, Dept Elect & Comp Engn, Tallahassee, FL 32310 USA
[2] Florida State Univ, Tallahassee, FL 32310 USA
[3] Florida State Univ, Aeropropuls Mechatron & Energy Ctr, Tallahassee, FL 32310 USA
[4] Florida State Univ, Ctr Adv Power Syst, Tallahassee, FL 32310 USA
基金
美国国家科学基金会;
关键词
Li2S deposition; polished graphite; lithium sulfur batteries; surface coverage; modeling; POLYSULFIDE SOLUBILITY; CARBON NANOFIBERS; S BATTERIES; MECHANISM; SULFIDE; INSIGHT; PRECIPITATION; SPECTROSCOPY; IMPEDANCE; ELECTRODE;
D O I
10.1021/acsaem.9b00524
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid deposition accounts for three-quarters of the theoretical capacity in lithium-sulfur (Li-S) batteries with liquid electrolyte. Despite extensive research efforts on cathode material synthesis, little knowledge has been gained so far in understanding and controlling the growth of solid discharge product in Li-S batteries. In this work, a polished graphite was used as a cathode to understand the growth mechanism of Li2S. The SEM/EDS analysis of the discharged cathodes indicates that the Li2S precipitate can grow over a micrometer in size and its morphology strongly depends on the depth of discharge (DODs) and discharge rate of the cell. In addition, the morphology evolution and the in situ electrochemical impedance spectra (EIS) show that the Li2S follows a dissolution-precipitation mechanism during its deposition on the graphite surface. Finally, a mathematical model based on the multicomponent transport theory is developed and used to describe the nucleation and precipitation phenomena on the 2D surface and the EIS spectra at different DODs. The model confirms that the surface passivation of the cathode plays a major role during the discharge of the battery and offers a simple way to measure experimentally the surface coverage as a function of the DOD in Li-S batteries. This work highlights the importance of deferring cathode surface passivation in Li-S batteries and indicates the potential utilization of nonporous carbons as alternative sulfur hosts.
引用
收藏
页码:3860 / 3868
页数:17
相关论文
共 50 条
  • [1] Activating Li2S as the Lithium-Containing Cathode in Lithium-Sulfur Batteries
    Ye, Hualin
    Li, Matthew
    Liu, Tongchao
    Li, Yanguang
    Lu, Jun
    ACS ENERGY LETTERS, 2020, 5 (07): : 2234 - 2245
  • [2] Regulating Li2S Deposition by Ostwald Ripening in Lithium-Sulfur Batteries
    Wang, Shuai
    Huang, Fanyang
    Li, Xinpeng
    Li, Wanxia
    Chen, Yawei
    Tang, Xin
    Jiao, Shuhong
    Cao, Ruiguo
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (03) : 4204 - 4210
  • [3] In Situ -Formed Li2S in Lithiated Graphite Electrodes for Lithium-Sulfur Batteries
    Manthiram, A. (manth@austin.utexas.edu), 1600, American Chemical Society (135):
  • [4] Toward robust lithium-sulfur batteries via advancing Li2S deposition
    Jiao, Xun
    Tang, Xiaoxia
    Li, Jinrui
    Xiang, Yujiao
    Li, Cunpu
    Tong, Cheng
    Shao, Minhua
    Wei, Zidong
    CHEMICAL SCIENCE, 2024, 15 (21) : 7949 - 7964
  • [5] In Situ-Formed Li2S in Lithiated Graphite Electrodes for Lithium-Sulfur Batteries
    Fu, Yongzhu
    Zu, Chenxi
    Manthiram, Arumugam
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (48) : 18044 - 18047
  • [6] Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries
    Zu, Chenxi
    Klein, Michael
    Manthiram, Arumugam
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (22): : 3986 - 3991
  • [7] A bidirectional electrocatalyst for enhancing Li2S nucleation and decomposition kinetics in lithium-sulfur batteries
    Ren, Yilun
    Chang, Shaozhong
    Hu, Libing
    Wang, Biao
    Sun, Dongyue
    Wu, Hao
    Ma, Yujie
    Yang, Yurong
    Tang, Shaochun
    Meng, Xiangkang
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (34) : 17532 - 17543
  • [8] High-performance lithium-sulfur batteries enabled by regulating Li2S deposition
    Lin, Qiaowei
    Huang, Ling
    Liu, Wenhua
    Li, Zejian
    Fang, Ruopian
    Wang, Da-Wei
    Yang, Quan-Hong
    Lv, Wei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (38) : 21385 - 21398
  • [9] Controlled Nucleation and Growth Process of Li2S2/Li2S in Lithium-Sulfur Batteries
    Zheng, Jianming
    Gu, Meng
    Wang, Chongmin
    Zuo, Pengjian
    Koech, Phillip K.
    Zhang, Ji-Guang
    Liu, Jun
    Xiao, Jie
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) : A1992 - A1996
  • [10] Mechanism and Kinetics of Li2S Precipitation in Lithium-Sulfur Batteries
    Fan, Frank Y.
    Carter, W. Craig
    Chiang, Yet-Ming
    ADVANCED MATERIALS, 2015, 27 (35) : 5203 - 5209