Label adversarial domain adaptation network for predicting remaining useful life based on cross-domain condition

被引:1
|
作者
Lv, Shanshan [1 ]
Xia, Chengcheng [1 ]
Cheng, Cong [1 ]
Yan, Jianhai [2 ]
Wu, Xiaodan [1 ]
机构
[1] Hebei Univ Technol, Sch Econ & Management, 5340 Xiping Rd, Tianjin 300401, Peoples R China
[2] Univ Shanghai Sci & Technol, Business Sch, Shanghai, Peoples R China
关键词
Remaining useful life (RUL); Domain adaptation; Pseudo class label; Similarity measurement indicator; MODEL;
D O I
10.1016/j.cie.2024.110542
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Most data-driven methods for predicting remaining useful life assume that the data under different operating conditions follow the same distribution. However, this assumption rarely holds in real-world situation. Additionally, traditional methods do not fully utilize the hidden label information from the target domain or account for the transfer quality of source domain data. To address these issues, Label Adversarial Domain Adaptation (LADA) network is introduced in this paper. Specifically, LADA aims to filter the source domain data and maximize the use of hidden label information from the target domain. Firstly, a similarity measurement indicator based on the pearson correlation coefficient (PCC) and dynamic time warping (DTW) is employed to filter source domain data similar to the target domain data distribution. Then, in order to fully utilize the hidden label information from the target domain, the cloud model and golden section are utilized to create pseudo class labels. Furthermore, a feature difference module is established that minimizes the disparity between domain features. This is realized by using the maximum mean difference (MMD) and Kolmogorov- Smirnov (K-S) statistical test. The experimental results indicate that LADA has advantages in cross-domain RUL prediction.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Unsupervised Adversarial Domain Adaptation for Cross-Domain Face Presentation Attack Detection
    Wang, Guoqing
    Han, Hu
    Shan, Shiguang
    Chen, Xilin
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 56 - 69
  • [42] Graph Domain Adversarial Transfer Network for Cross-Domain Sentiment Classification
    Tang, Hengliang
    Mi, Yuan
    Xue, Fei
    Cao, Yang
    IEEE ACCESS, 2021, 9 (09): : 33051 - 33060
  • [43] Cross-domain speaker recognition using domain adversarial siamese network with a domain discriminator
    Chen, Zhigao
    Miao, Xiaoxiao
    Xiao, Runqiu
    Wang, Wenchao
    ELECTRONICS LETTERS, 2020, 56 (14) : 737 - 738
  • [44] Cross-Domain Association Mining Based Generative Adversarial Network for Pansharpening
    He, Lijun
    Zhang, Wanyue
    Shi, Jiankang
    Li, Fan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 7770 - 7783
  • [45] Identification of flotation working condition based on feature domain adaptation of cross-domain manifold regularization
    An D.
    Wang S.
    Guan Z.-X.
    Liu Y.
    Zhang L.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (09): : 2597 - 2605
  • [46] A Deep Dual Adversarial Network for Cross-Domain Recommendation
    Zhang, Qian
    Liao, Wenhui
    Zhang, Guangquan
    Yuan, Bo
    Lu, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 3266 - 3278
  • [47] An Entity-Aware Adversarial Domain Adaptation Network for Cross-Domain Named Entity Recognition (Student Abstract)
    Peng, Qi
    Zheng, Changmeng
    Cai, Yi
    Wang, Tao
    Xie, Haoran
    Li, Qing
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15865 - 15866
  • [48] Cross-Domain Communications Between Agents Via Adversarial-Based Domain Adaptation in Reinforcement Learning
    Meng, Lichao
    Li, Jingjing
    Lu, Ke
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 413 - 418
  • [49] Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction
    Yang, Jing
    Wang, Xiaomin
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 244
  • [50] Remaining Useful Life Prediction Based on Multi-Representation Domain Adaptation
    Lyu, Yi
    Zhang, Qichen
    Wen, Zhenfei
    Chen, Aiguo
    MATHEMATICS, 2022, 10 (24)