Label adversarial domain adaptation network for predicting remaining useful life based on cross-domain condition

被引:1
|
作者
Lv, Shanshan [1 ]
Xia, Chengcheng [1 ]
Cheng, Cong [1 ]
Yan, Jianhai [2 ]
Wu, Xiaodan [1 ]
机构
[1] Hebei Univ Technol, Sch Econ & Management, 5340 Xiping Rd, Tianjin 300401, Peoples R China
[2] Univ Shanghai Sci & Technol, Business Sch, Shanghai, Peoples R China
关键词
Remaining useful life (RUL); Domain adaptation; Pseudo class label; Similarity measurement indicator; MODEL;
D O I
10.1016/j.cie.2024.110542
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Most data-driven methods for predicting remaining useful life assume that the data under different operating conditions follow the same distribution. However, this assumption rarely holds in real-world situation. Additionally, traditional methods do not fully utilize the hidden label information from the target domain or account for the transfer quality of source domain data. To address these issues, Label Adversarial Domain Adaptation (LADA) network is introduced in this paper. Specifically, LADA aims to filter the source domain data and maximize the use of hidden label information from the target domain. Firstly, a similarity measurement indicator based on the pearson correlation coefficient (PCC) and dynamic time warping (DTW) is employed to filter source domain data similar to the target domain data distribution. Then, in order to fully utilize the hidden label information from the target domain, the cloud model and golden section are utilized to create pseudo class labels. Furthermore, a feature difference module is established that minimizes the disparity between domain features. This is realized by using the maximum mean difference (MMD) and Kolmogorov- Smirnov (K-S) statistical test. The experimental results indicate that LADA has advantages in cross-domain RUL prediction.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Triple Loss Adversarial Domain Adaptation Network for Cross-Domain Sea-Land Clutter Classification
    Zhang, Xiaoxuan
    Li, Yang
    Pan, Quan
    Yu, Chengang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 18
  • [32] Dynamic Model-Assisted Bearing Remaining Useful Life Prediction Using the Cross-Domain Transformer Network
    Zhang, Yongchao
    Feng, Ke
    Ji, J. C.
    Yu, Kun
    Ren, Zhaohui
    Liu, Zheng
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2023, 28 (02) : 1070 - 1080
  • [33] Open-set federated adversarial domain adaptation based cross-domain fault diagnosis
    Xu, Shu
    Ma, Jian
    Song, Dengwei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [34] Causal Inference-Based Adversarial Domain Adaptation for Cross-Domain Industrial Intrusion Detection
    Chen, Yongle
    Ji, Yubo
    Wang, Haoran
    Hao, Xiaoyan
    Yang, Yuli
    Ma, Yao
    Yu, Dan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (01) : 970 - 979
  • [35] Leveraging working-condition-related features for enhanced cross-domain remaining useful life prediction of aircraft engines
    Zhang, Zhiyao
    Cheng, Jiting
    Chen, Pengpeng
    Gao, Shuang
    Chen, Xiaohui
    Zio, Enrico
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (04):
  • [36] Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors
    Zhuang, Jichao
    Jia, Minping
    Ding, Yifei
    Ding, Peng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 216
  • [37] Adversarial Regressive Domain Adaptation Approach for Infrared Thermography-Based Unsupervised Remaining Useful Life Prediction
    Jiang, Yimin
    Xia, Tangbin
    Wang, Dong
    Fang, Xiaolei
    Xi, Lifeng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) : 7219 - 7229
  • [38] Wasserstein distance based multi-scale adversarial domain adaptation method for remaining useful life prediction
    Huaitao Shi
    Chengzhuang Huang
    Xiaochen Zhang
    Jinbao Zhao
    Sihui Li
    Applied Intelligence, 2023, 53 : 3622 - 3637
  • [39] Wasserstein distance based multi-scale adversarial domain adaptation method for remaining useful life prediction
    Shi, Huaitao
    Huang, Chengzhuang
    Zhang, Xiaochen
    Zhao, Jinbao
    Li, Sihui
    APPLIED INTELLIGENCE, 2023, 53 (03) : 3622 - 3637
  • [40] Cross-domain damage detection through partial conditional adversarial domain adaptation
    Li, Zuoqiang
    Weng, Shun
    Zhu, Hongping
    Lei, Aoqi
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 225