Introducing the Futile Recanalization Prediction Score (FRPS): A Novel Approach to Predict and Mitigate Ineffective Recanalization after Endovascular Treatment of Acute Ischemic Stroke

被引:4
|
作者
Shen, Helen [1 ,2 ]
Huasen, Bella B. [3 ,4 ]
Killingsworth, Murray C. [2 ,5 ,6 ,7 ]
Bhaskar, Sonu M. M. [1 ,2 ,5 ,6 ,8 ,9 ]
机构
[1] Global Hlth Neurol Lab, Sydney, NSW 2150, Australia
[2] Univ New South Wales UNSW, South West Sydney Clin Campuses, UNSW Med & Hlth, Sydney, NSW 2170, Australia
[3] Lancashire Teaching Hosp NHS Fdn Trust, Dept Intervent Neuroradiol, Preston PR2 9HT, England
[4] Univ Edinburgh, Coll Med & Vet Med, Edinburgh Med Sch, Edinburgh EH16 4UX, Scotland
[5] Ingham Inst Appl Med Res, Cell Based Dis Intervent Grp, Clin Sci Stream, Liverpool, NSW 2170, Australia
[6] NSW Hlth Pathol, NSW Brain Clot Bank, Sydney, NSW 2170, Australia
[7] Western Sydney Univ, Ingham Inst Appl Med Res, Dept Anat Pathol, NSW Hlth Pathol, Liverpool, NSW 2170, Australia
[8] South West Sydney Local Hlth Dist, Liverpool Hosp, Dept Neurol & Neurophysiol, Liverpool, NSW 2170, Australia
[9] Natl Cerebral & Cardiovasc Ctr NCVC, Dept Neurol, Div Cerebrovasc Med & Neurol, 6-1 Kishibeshimmachi, Suita, Osaka 5648565, Japan
来源
NEUROLOGY INTERNATIONAL | 2024年 / 16卷 / 03期
基金
日本学术振兴会;
关键词
acute stroke; endovascular thrombectomy; futile recanalization; prognosis; clinical score; risk prediction; MECHANICAL THROMBECTOMY; CLINICAL-OUTCOMES; REPERFUSION; ASSOCIATION; PASSES; ARTERY; TIME; LEUKOARAIOSIS; SECONDARY; THERAPY;
D O I
10.3390/neurolint16030045
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective: This study aims to develop and validate the Futile Recanalization Prediction Score (FRPS), a novel tool designed to predict the severity risk of FR and aid in pre- and post-EVT risk assessments. Methods: The FRPS was developed using a rigorous process involving the selection of predictor variables based on clinical relevance and potential impact. Initial equations were derived from previous meta-analyses and refined using various statistical techniques. We employed machine learning algorithms, specifically random forest regression, to capture nonlinear relationships and enhance model performance. Cross-validation with five folds was used to assess generalizability and model fit. Results: The final FRPS model included variables such as age, sex, atrial fibrillation (AF), hypertension (HTN), diabetes mellitus (DM), hyperlipidemia, cognitive impairment, pre-stroke modified Rankin Scale (mRS), systolic blood pressure (SBP), onset-to-puncture time, sICH, and NIHSS score. The random forest model achieved a mean R-squared value of approximately 0.992. Severity ranges for FRPS scores were defined as mild (FRPS < 66), moderate (FRPS 66-80), and severe (FRPS > 80). Conclusions: The FRPS provides valuable insights for treatment planning and patient management by predicting the severity risk of FR. This tool may improve the identification of candidates most likely to benefit from EVT and enhance prognostic accuracy post-EVT. Further clinical validation in diverse settings is warranted to assess its effectiveness and reliability.
引用
收藏
页码:605 / 619
页数:15
相关论文
共 50 条
  • [41] The anesthetic approach for endovascular recanalization therapy depends on the lesion site in acute ischemic stroke
    Froehlich, Kilian
    Siedler, Gabriela
    Stoll, Svenja
    Macha, Kosmas
    Kinfe, Thomas M.
    Doerfler, Arnd
    Eisenhut, Felix
    Engelhorn, Tobias
    Hoelter, Philip
    Lang, Stefan
    Muehlen, Iris
    Schmidt, Manuel
    Kallmunzer, Bernd
    Schwab, Stefan
    Seifert, Frank
    Winder, Klemens
    Knott, Michael
    NEURORADIOLOGY, 2021, 63 (12) : 2121 - 2129
  • [42] The anesthetic approach for endovascular recanalization therapy depends on the lesion site in acute ischemic stroke
    Kilian Fröhlich
    Gabriela Siedler
    Svenja Stoll
    Kosmas Macha
    Thomas M. Kinfe
    Arnd Doerfler
    Felix Eisenhut
    Tobias Engelhorn
    Philip Hoelter
    Stefan Lang
    Iris Muehlen
    Manuel Schmidt
    Bernd Kallmünzer
    Stefan Schwab
    Frank Seifert
    Klemens Winder
    Michael Knott
    Neuroradiology, 2021, 63 : 2121 - 2129
  • [43] Characteristics and prognostic impact of unsuccessful recanalization after endovascular therapy for acute ischemic stroke
    Fujiwara, Satoru
    Uchida, Kazutaka
    Sakakibara, Fumihiro
    Sakai, Nobuyuki
    Imamura, Hirotoshi
    Ohta, Tsuyoshi
    Kawamoto, Michi
    Ohara, Nobuyuki
    Tanaka, Kanta
    Yamagami, Hiroshi
    Matsumoto, Yasushi
    Takeuchi, Masataka
    Yoshimura, Shinichi
    Morimoto, Takeshi
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2024, 466
  • [44] The BAND score: a simple upfront predictive model for futile recanalization to guide patient selection for endovascular thrombectomy during acute ischemic stroke triage
    Chen, Huanwen
    Colasurdo, Marco
    Phipps, Michael
    Miller, Timothy
    Cherian, Jacob
    Granados, Jose Marino
    Cronin, Carolyn
    Wozniak, Marcella
    Gandhi, Dheeraj
    Chaturvedi, Seemant
    Jindal, Gaurav
    NEUROLOGY, 2023, 100 (17)
  • [45] Combined Multimodal Computed Tomography Score Correlates With Futile Recanalization After Thrombectomy in Patients With Acute Stroke
    Espinosa de Rueda, Mariano
    Parrilla, Guillermo
    Manzano-Fernandez, Sergio
    Garcia-Villalba, Blanca
    Zamarro, Joaquin
    Hernandez-Fernandez, Francisco
    Sanchez-Vizcaino, Cristina
    Carreon, Ester
    Morales, Ana
    Moreno, Antonio
    STROKE, 2015, 46 (09) : 2517 - 2522
  • [46] Novel Machine Learning Model for Prediction of Futile Recanalization in Acute Ischemic Stroke Patients With Anterior Circulation Large Vessel Occlusion
    Cunningham, Conor
    Zohdy, Youssef
    Elawady, Sameh Samir
    Matsukawa, Hidetoshi
    Sowlat, Mohammad-Mahdi
    Uchida, Kazutaka
    Zandpazandi, Sara
    Spiotta, Alejandro M.
    STROKE, 2024, 55
  • [47] Optimal thresholds to predict long-term outcome after complete endovascular recanalization in acute anterior ischemic stroke
    Neuberger, Ulf
    Vollmuth, Philipp
    Nagel, Simon
    Schonenberger, Silvia
    Weyland, Charlotte Sabine
    Gumbinger, Christoph
    Ringleb, Peter Arthur
    Bendszus, Martin
    Pfaff, Johannes Alex Rolf
    Mohlenbruch, Markus Alfred
    JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2021, 13 (12) : 1124 - +
  • [48] Non-contrast CT radiomics-clinical machine learning model for futile recanalization after endovascular treatment in anterior circulation acute ischemic stroke
    Sun, Tao
    Yu, Hai-yun
    Zhan, Chun-hua
    Guo, Han-long
    Luo, Mu-yun
    BMC MEDICAL IMAGING, 2024, 24 (01):
  • [49] Safety of Induced Hypertension in Acute Ischemic Stroke Patients with Suboptimal Recanalization after Endovascular Thrombolysis
    Cordina, Steve
    Majidi, Shahram
    Chaudhry, Saqib
    Hassan, Ameer
    Rodriguez, Gustavo
    Suri, M. Fareed
    Qureshi, Adnan
    NEUROLOGY, 2012, 78
  • [50] Early Prediction of Malignant Edema After Successful Recanalization in Patients with Acute Ischemic Stroke
    Wang, Changyi
    Zhu, Qiange
    Cui, Ting
    Wang, Lu
    Yang, Tang
    Hao, Zilong
    Wu, Simiao
    Zheng, Hongbo
    Hu, Fayun
    Wu, Bo
    NEUROCRITICAL CARE, 2022, 36 (03) : 822 - 830