Introducing the Futile Recanalization Prediction Score (FRPS): A Novel Approach to Predict and Mitigate Ineffective Recanalization after Endovascular Treatment of Acute Ischemic Stroke

被引:4
|
作者
Shen, Helen [1 ,2 ]
Huasen, Bella B. [3 ,4 ]
Killingsworth, Murray C. [2 ,5 ,6 ,7 ]
Bhaskar, Sonu M. M. [1 ,2 ,5 ,6 ,8 ,9 ]
机构
[1] Global Hlth Neurol Lab, Sydney, NSW 2150, Australia
[2] Univ New South Wales UNSW, South West Sydney Clin Campuses, UNSW Med & Hlth, Sydney, NSW 2170, Australia
[3] Lancashire Teaching Hosp NHS Fdn Trust, Dept Intervent Neuroradiol, Preston PR2 9HT, England
[4] Univ Edinburgh, Coll Med & Vet Med, Edinburgh Med Sch, Edinburgh EH16 4UX, Scotland
[5] Ingham Inst Appl Med Res, Cell Based Dis Intervent Grp, Clin Sci Stream, Liverpool, NSW 2170, Australia
[6] NSW Hlth Pathol, NSW Brain Clot Bank, Sydney, NSW 2170, Australia
[7] Western Sydney Univ, Ingham Inst Appl Med Res, Dept Anat Pathol, NSW Hlth Pathol, Liverpool, NSW 2170, Australia
[8] South West Sydney Local Hlth Dist, Liverpool Hosp, Dept Neurol & Neurophysiol, Liverpool, NSW 2170, Australia
[9] Natl Cerebral & Cardiovasc Ctr NCVC, Dept Neurol, Div Cerebrovasc Med & Neurol, 6-1 Kishibeshimmachi, Suita, Osaka 5648565, Japan
来源
NEUROLOGY INTERNATIONAL | 2024年 / 16卷 / 03期
基金
日本学术振兴会;
关键词
acute stroke; endovascular thrombectomy; futile recanalization; prognosis; clinical score; risk prediction; MECHANICAL THROMBECTOMY; CLINICAL-OUTCOMES; REPERFUSION; ASSOCIATION; PASSES; ARTERY; TIME; LEUKOARAIOSIS; SECONDARY; THERAPY;
D O I
10.3390/neurolint16030045
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective: This study aims to develop and validate the Futile Recanalization Prediction Score (FRPS), a novel tool designed to predict the severity risk of FR and aid in pre- and post-EVT risk assessments. Methods: The FRPS was developed using a rigorous process involving the selection of predictor variables based on clinical relevance and potential impact. Initial equations were derived from previous meta-analyses and refined using various statistical techniques. We employed machine learning algorithms, specifically random forest regression, to capture nonlinear relationships and enhance model performance. Cross-validation with five folds was used to assess generalizability and model fit. Results: The final FRPS model included variables such as age, sex, atrial fibrillation (AF), hypertension (HTN), diabetes mellitus (DM), hyperlipidemia, cognitive impairment, pre-stroke modified Rankin Scale (mRS), systolic blood pressure (SBP), onset-to-puncture time, sICH, and NIHSS score. The random forest model achieved a mean R-squared value of approximately 0.992. Severity ranges for FRPS scores were defined as mild (FRPS < 66), moderate (FRPS 66-80), and severe (FRPS > 80). Conclusions: The FRPS provides valuable insights for treatment planning and patient management by predicting the severity risk of FR. This tool may improve the identification of candidates most likely to benefit from EVT and enhance prognostic accuracy post-EVT. Further clinical validation in diverse settings is warranted to assess its effectiveness and reliability.
引用
收藏
页码:605 / 619
页数:15
相关论文
共 50 条
  • [31] PROGNOSTIC INFLAMMATORY BIOMARKERS AFTER ENDOVASCULAR RECANALIZATION THERAPY IN ACUTE ISCHEMIC STROKE
    Mo, H.
    Song, M.
    Jang, M. U.
    Im, H.
    INTERNATIONAL JOURNAL OF STROKE, 2021, 16 (2_SUPPL) : 57 - 57
  • [32] A visualized nomogram to online predict futile recanalization after endovascular thrombectomy in basilar artery occlusion stroke
    Lin, ShiTeng
    Lin, XinPing
    Zhang, Juan
    Wan, Meng
    Chen, Chen
    Jie, Qiong
    Wu, YueZhang
    Qiu, RunZe
    Cui, XiaoLi
    Jiang, ChunLian
    Zou, JianJun
    Zhao, ZhiHong
    FRONTIERS IN NEUROLOGY, 2022, 13
  • [33] Subacute Recanalization and Reocclusion in Patients with Acute Ischemic Stroke Following Endovascular Treatment
    Adnan I. Qureshi
    Haitham M. Hussein
    Mohamed Abdelmoula
    Alexandros L. Georgiadis
    Nazli Janjua
    Neurocritical Care, 2009, 10 : 195 - 203
  • [34] Subacute Recanalization and Reocclusion in Patients with Acute Ischemic Stroke Following Endovascular Treatment
    Qureshi, Adnan I.
    Hussein, Haitham M.
    Abdelmoula, Mohamed
    Georgiadis, Alexandros L.
    Janjua, Nazli
    NEUROCRITICAL CARE, 2009, 10 (02) : 195 - 203
  • [35] Association of plasma VEGF with futile recanalization and intracranial angiogenesis in ischemic stroke post-endovascular treatment
    Xu, Bingdong
    Wu, Zhengdong
    Lin, Yingze
    Liu, Yujun
    Liu, Leiyuan
    Zhang, Yusheng
    JOURNAL OF CLINICAL NEUROSCIENCE, 2024, 129
  • [36] MRI quantitative T2*mapping on thrombus to predict recanalization after endovascular treatment for acute anterior ischemic stroke
    Bourcier, R.
    Brecheteau, N.
    Costalat, V.
    Daumas-Duport, B.
    Guyornarch-Delasalle, B.
    Desal, H.
    Naggara, O.
    Serfaty, J. M.
    JOURNAL OF NEURORADIOLOGY, 2017, 44 (04) : 241 - 246
  • [37] MRI quantitative T2 mapping on thrombus to predict recanalization after endovascular treatment for acute anterior ischemic stroke
    Bourcier, R.
    Desal, H.
    Daumas-Duport, B.
    Naggara, O.
    Costalat, V.
    Serfaty, J. M.
    CEREBROVASCULAR DISEASES, 2017, 43
  • [38] TAB-TICI Score: Successful Recanalization Score After Endovascular Thrombectomy in Acute Stroke
    Seo, Woo-Keun
    Nam, Hyo Suk
    Chung, Jong-Won
    Kim, Young Dae
    Kim, Keon-Ha
    Bang, Oh Young
    Kim, Byung Moon
    Kim, Gyeung-Moon
    Jeon, Pyoung
    Heo, Ji Hoe
    FRONTIERS IN NEUROLOGY, 2021, 12
  • [39] A Score for Hemorrhagic Transformation Prediction in Acute Ischemic Stroke Not Treated With Recanalization Therapies.
    Andrade, Joao B.
    Carvalho, Joao J.
    Lima, Fabricio O.
    Silva, Gisele S.
    STROKE, 2019, 50
  • [40] Favorable Cerebral Collateral Cascades Improve Futile Recanalization by Reducing Ischemic Core Volume in Acute Ischemic Stroke Patients Undergoing Endovascular Treatment
    Huang, Liping
    Jiang, Shuyu
    Gong, Chen
    Wu, Gang
    Guo, Jing
    Liu, Jin
    Yuan, Jinxian
    Wang, You
    Xu, Tao
    Liu, Chang
    Chen, Shengli
    Chen, Yangmei
    TRANSLATIONAL STROKE RESEARCH, 2025,