Anomaly-based intrusion detection system using Harris Hawks optimisation with a sigmoid neuron network

被引:0
|
作者
Narengbam, Lenin [1 ]
Dey, Shouvik [1 ]
机构
[1] Natl Inst Technol Nagaland, Dept Comp Sci & Engn, Dimapur 797103, India
关键词
intrusion detection system; IDS; neural network; meta-heuristic optimisation; machine learning; CUCKOO SEARCH ALGORITHM; IDS;
D O I
10.1504/IJICS.2024.140219
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study introduces an innovative approach, merging Harris Hawks optimisation (HHO) with a sigmoid neuron network (SN), to enhance anomaly-based intrusion detection systems (ADS) performance. The resultant SN-HHO hybrid model aims to elevate detection rates and lower false positive rates (FPRs) within ADS. Evaluation across five datasets - UNSW-NB15, CIDDS-001, NSL-KDD, AWID3, and CICDDoS2019 - reveals heightened accuracy and faster convergence compared to existing methods. This work underscores the potential synergy of meta-heuristic optimisation and artificial neural networks, offering a promising strategy to fortify IDS performance and reliability, thus presenting a novel direction for advancing anomaly detection practices.
引用
收藏
页码:5 / 27
页数:24
相关论文
共 50 条
  • [1] Anomaly-Based Network Intrusion Detection System
    Villalba, L. J. G.
    Orozco, A. L. S.
    Vidal, J. M.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (03) : 850 - 855
  • [2] An anomaly-based Network Intrusion Detection System using Deep learning
    Nguyen Thanh Van
    Tran Ngoc Thinh
    Le Thanh Sach
    2017 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2017, : 210 - 214
  • [3] Anomaly-Based Network Intrusion Detection Using SVM
    Zhang, Yuan
    Yang, Qinghai
    Lambotharan, Sangarapillai
    Kyriakopoulos, Konstantinos
    Ghafir, Ibrahim
    AsSadhan, Basil
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [4] ANOMALY-BASED NETWORK INTRUSION DETECTION METHODS
    Nevlud, Pavel
    Bures, Miroslav
    Kapicak, Lukas
    Zdralek, Jaroslav
    ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2013, 11 (06) : 468 - 474
  • [5] LSTM for Anomaly-Based Network Intrusion Detection
    Althubiti, Sara A.
    Jones, Eric Marcell, Jr.
    Roy, Kaushik
    2018 28TH INTERNATIONAL TELECOMMUNICATION NETWORKS AND APPLICATIONS CONFERENCE (ITNAC), 2018, : 293 - 295
  • [6] Design of Anomaly-Based Intrusion Detection System Using Fog Computing for IoT Network
    Kumar, Prabhat
    Gupta, Govind P.
    Tripathi, Rakesh
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2021, 55 (02) : 137 - 147
  • [7] Design of Anomaly-Based Intrusion Detection System Using Fog Computing for IoT Network
    Govind P. Prabhat Kumar
    Rakesh Gupta
    Automatic Control and Computer Sciences, 2021, 55 : 137 - 147
  • [8] Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm
    Taief Alaa Alamiedy
    Mohammed Anbar
    Zakaria N. M. Alqattan
    Qusay M. Alzubi
    Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 3735 - 3756
  • [9] Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm
    Alamiedy, Taief Alaa
    Anbar, Mohammed
    Alqattan, Zakaria N. M.
    Alzubi, Qusay M.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (09) : 3735 - 3756
  • [10] Anomaly-Based Network Intrusion Detection: An Outlier Detection Techniques
    Kumar, Neeraj
    Kumar, Upendra
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2016), 2018, 614 : 262 - 269