Anomaly-based intrusion detection system using Harris Hawks optimisation with a sigmoid neuron network

被引:0
|
作者
Narengbam, Lenin [1 ]
Dey, Shouvik [1 ]
机构
[1] Natl Inst Technol Nagaland, Dept Comp Sci & Engn, Dimapur 797103, India
关键词
intrusion detection system; IDS; neural network; meta-heuristic optimisation; machine learning; CUCKOO SEARCH ALGORITHM; IDS;
D O I
10.1504/IJICS.2024.140219
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study introduces an innovative approach, merging Harris Hawks optimisation (HHO) with a sigmoid neuron network (SN), to enhance anomaly-based intrusion detection systems (ADS) performance. The resultant SN-HHO hybrid model aims to elevate detection rates and lower false positive rates (FPRs) within ADS. Evaluation across five datasets - UNSW-NB15, CIDDS-001, NSL-KDD, AWID3, and CICDDoS2019 - reveals heightened accuracy and faster convergence compared to existing methods. This work underscores the potential synergy of meta-heuristic optimisation and artificial neural networks, offering a promising strategy to fortify IDS performance and reliability, thus presenting a novel direction for advancing anomaly detection practices.
引用
收藏
页码:5 / 27
页数:24
相关论文
共 50 条
  • [41] Robust anomaly-based intrusion detection system for in-vehicle network by graph neural network framework
    Xiao, Junchao
    Yang, Lin
    Zhong, Fuli
    Chen, Hongbo
    Li, Xiangxue
    APPLIED INTELLIGENCE, 2023, 53 (03) : 3183 - 3206
  • [42] Anomaly-based intrusion detection system in IoT using kernel extreme learning machine
    Bacha, Sawssen
    Aljuhani, Ahamed
    Abdellafou, Khawla Ben
    Taouali, Okba
    Liouane, Noureddine
    Alazab, Mamoun
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) : 231 - 242
  • [43] Anomaly-based intrusion detection system in IoT using kernel extreme learning machine
    Bacha S.
    Aljuhani A.
    Abdellafou K.B.
    Taouali O.
    Liouane N.
    Alazab M.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (1) : 231 - 242
  • [44] An Anomaly-Based Intrusion Detection System for Internet of Medical Things Networks
    Zachos, Georgios
    Essop, Ismael
    Mantas, Georgios
    Porfyrakis, Kyriakos
    Ribeiro, Jose C.
    Rodriguez, Jonathan
    ELECTRONICS, 2021, 10 (21)
  • [45] Review on Feature Selection Algorithms for Anomaly-Based Intrusion Detection System
    Alamiedy, Taief Alaa
    Anbar, Mohammed
    Al-Ani, Ahmed K.
    Al-Tamimi, Bassam Naji
    Faleh, Nameer
    RECENT TRENDS IN DATA SCIENCE AND SOFT COMPUTING, IRICT 2018, 2019, 843 : 605 - 619
  • [46] DroidLight: Lightweight Anomaly-based Intrusion Detection System for Smartphone Devices
    Barbhuiya, Sakil
    Kilpatrick, Peter
    Nikolopoulos, Dimitrios S.
    PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND NETWORKING (ICDCN 2020), 2020,
  • [47] Anomaly-Based Intrusion Detection System for Cyber-Physical System Security
    Colelli, Riccardo
    Magri, Filippo
    Panzieri, Stefano
    Pascucci, Federica
    2021 29TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2021, : 428 - 434
  • [48] HA-IDS: A Heterogeneous Anomaly-based Intrusion Detection System
    Chau Tran
    Tran Nguyen Vo
    Tran Ngoc Thinh
    2017 4TH NAFOSTED CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS), 2017, : 156 - 161
  • [49] Anomaly-based Intrusion Detection and Prevention Using Adaptive Boosting in Software-defined Network
    Perwira, Rifki Indra
    Fauziah, Yuli
    Mahendra, I. Putu Retya
    Prasetyo, Dessyanto Boedi
    Simanjuntak, Oliver Samuel
    2019 5TH INTERNATIONAL CONFERENCE ON SCIENCE ININFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0 - TOWARDS INNOVATION IN CYBER PHYSICAL SYSTEM, 2019, : 188 - 192
  • [50] A clustering method for improving performance of anomaly-based intrusion detection system
    Song, Jungsuk
    Ohira, Kenji
    Takakura, Hiroki
    Okabe, Yasuo
    Kwon, Yongjin
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (05) : 1282 - 1291