LSTM for Anomaly-Based Network Intrusion Detection

被引:0
|
作者
Althubiti, Sara A. [1 ]
Jones, Eric Marcell, Jr. [1 ]
Roy, Kaushik [1 ]
机构
[1] North Carolina A&T State Univ, Dept Comp Sci, Greensboro, NC 27411 USA
基金
美国国家科学基金会;
关键词
intrusion detection system; anomaly detection; long short-term memory;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Due to the massive amount of the network traffic, attackers have a great chance to cause a huge damage to the network system or its users. Intrusion detection plays an important role in ensuring security for the system by detecting the attacks and the malicious activities. In this paper, we utilize CIDDS dataset and apply a deep learning approach, Long-Short-Term Memory (LSTM), to implement intrusion detection system. This research achieves a reasonable accuracy of 0.85.
引用
收藏
页码:293 / 295
页数:3
相关论文
共 50 条
  • [1] ANOMALY-BASED NETWORK INTRUSION DETECTION METHODS
    Nevlud, Pavel
    Bures, Miroslav
    Kapicak, Lukas
    Zdralek, Jaroslav
    [J]. ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2013, 11 (06) : 468 - 474
  • [2] Anomaly-Based Network Intrusion Detection System
    Villalba, L. J. G.
    Orozco, A. L. S.
    Vidal, J. M.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (03) : 850 - 855
  • [3] Anomaly-Based Network Intrusion Detection Using SVM
    Zhang, Yuan
    Yang, Qinghai
    Lambotharan, Sangarapillai
    Kyriakopoulos, Konstantinos
    Ghafir, Ibrahim
    AsSadhan, Basil
    [J]. 2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [4] Anomaly-Based Network Intrusion Detection: An Outlier Detection Techniques
    Kumar, Neeraj
    Kumar, Upendra
    [J]. PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2016), 2018, 614 : 262 - 269
  • [5] Anomaly-based network intrusion detection: Techniques, systems and challenges
    Garcia-Teodoro, P.
    Diaz-Verdejo, J.
    Macia-Fernandez, G.
    Vazquez, E.
    [J]. COMPUTERS & SECURITY, 2009, 28 (1-2) : 18 - 28
  • [6] A Convolutional Neural Network for Improved Anomaly-Based Network Intrusion Detection
    Al-Turaiki, Isra
    Altwaijry, Najwa
    [J]. BIG DATA, 2021, 9 (03) : 233 - 252
  • [7] Proposals on assessment environments for anomaly-based network intrusion detection systems
    Bermudez-Edo, M.
    Salazar-Hernandez, R.
    Diaz-Verdejo, J.
    Garcia-Teodoro, P.
    [J]. CRITICAL INFORMATION INFRASTRUCTURES SECURITY, 2006, 4347 : 210 - +
  • [8] Profiling Network Traffic Behavior for the purpose of Anomaly-based Intrusion Detection
    Gill, Manmeet Singh
    Lindskog, Dale
    Zavarsky, Pavol
    [J]. 2018 17TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (IEEE TRUSTCOM) / 12TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (IEEE BIGDATASE), 2018, : 885 - 890
  • [9] An anomaly-based Network Intrusion Detection System using Deep learning
    Nguyen Thanh Van
    Tran Ngoc Thinh
    Le Thanh Sach
    [J]. 2017 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2017, : 210 - 214
  • [10] Panacea: Automating Attack Classification for Anomaly-Based Network Intrusion Detection Systems
    Bolzoni, Damiano
    Etalle, Sandro
    Hartel, Pieter H.
    [J]. RECENT ADVANCES IN INTRUSION DETECTION, PROCEEDINGS, 2009, 5758 : 1 - 20