Prairie Dog Optimization Algorithm with deep learning assisted based Aerial Image Classification on UAV imagery

被引:0
|
作者
Alkhalifa, Amal K. [1 ]
Saeed, Muhammad Kashif [2 ]
Othman, Kamal M. [3 ]
Ebad, Shouki A. [4 ]
Alonazi, Mohammed [5 ]
Mohamed, Abdullah [6 ]
机构
[1] Princess Nourah bint Abdulrahman Univ, Appl Coll, Dept Comp Sci & Informat Technol, POB 84428, Riyadh 11671, Saudi Arabia
[2] King Khalid Univ, Appl Coll Mahayil, Dept Comp Sci, Abha, Saudi Arabia
[3] Umm Al Qura Univ, Coll Engn & Islamic Architecture, Dept Elect Engn, Mecca, Saudi Arabia
[4] Northern Border Univ, Fac Sci, Dept Comp Sci, Ar Ar 91431, Saudi Arabia
[5] Prince Sattam bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Informat Syst, Al Kharj 16273, Saudi Arabia
[6] Future Univ Egypt, Res Ctr, New Cairo 11845, Egypt
关键词
Aerial image classification; Remote sensing; UAV; Prairie dog optimization; Deep learning;
D O I
10.1016/j.heliyon.2024.e37446
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study presents a Prairie Dog Optimization Algorithm with a Deep learning-assisted Aerial Image Classification Approach (PDODL-AICA) on UAV images. The PDODL-AICA technique exploits the optimal DL model for classifying aerial images into numerous classes. In the presented PDODL-AICA technique, the feature extraction procedure is executed using the EfficientNetB7 model. Besides, the hyperparameter tuning of the EfficientNetB7 technique uses the PDO model. The PDODL-AICA technique uses a convolutional variational autoencoder (CVAE) model to detect and classify aerial images. The performance study of the PDODL-AICA model is implemented on a benchmark UAV image dataset. The experimental values inferred the authority of the PDODLAICA approach over recent models in terms of dissimilar measures.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Automated Optimization-Based Deep Learning Models for Image Classification Tasks
    Migayo, Daudi Mashauri
    Kaijage, Shubi
    Swetala, Stephen
    Nyambo, Devotha G.
    [J]. COMPUTERS, 2023, 12 (09)
  • [42] Corn classification using Deep Learning with UAV imagery. An operational proof of concept
    Trujillano, Fedra
    Flores, Andres
    Saito, Carlos
    Balcazar, Mario
    Racoceanu, Daniel
    [J]. 2018 IEEE 1ST COLOMBIAN CONFERENCE ON APPLICATIONS IN COMPUTATIONAL INTELLIGENCE (COLCACI), 2018,
  • [43] Optimization algorithm of UAV-assisted federated learning resources based on wireless energy harvesting
    Yuan, Youhan
    Zhu, Qi
    [J]. IET Communications, 2024, 18 (19) : 1621 - 1631
  • [44] Systematic evaluation of deep learning based detection frameworks for aerial imagery
    Sommer, Lars
    Steinmann, Lucas
    Schumann, Arne
    Beyerer, Juergen
    [J]. AUTOMATIC TARGET RECOGNITION XXVIII, 2018, 10648
  • [45] A natural evolution optimization based deep learning algorithm for neurological disorder classification
    Shams, Maha
    Sagheer, Alaa
    [J]. BIO-MEDICAL MATERIALS AND ENGINEERING, 2020, 31 (02) : 73 - 94
  • [47] Semisupervised classification of hurricane damage from postevent aerial imagery using deep learning
    Li, Yundong
    Ye, Shi
    Bartoli, Ivan
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (04)
  • [48] Enhancing Security in IoT-Assisted UAV Networks Using Adaptive Mongoose Optimization Algorithm With Deep Learning
    Alotaibi, Saud S.
    Sayed, Ahmed
    Abd Elhameed, Elmouez Samir
    Alghushairy, Omar
    Assiri, Mohammed
    Ibrahim, Sara Saadeldeen
    [J]. IEEE ACCESS, 2024, 12 : 63768 - 63776
  • [49] UAV-assisted task offloading system using dung beetle optimization algorithm & deep reinforcement learning
    Zhang, Degan
    Zhang, Zhihao
    Zhang, Jie
    Zhang, Ting
    Zhang, Lei
    Chen, Hongtao
    [J]. AD HOC NETWORKS, 2024, 156
  • [50] Image Classification Algorithm Based on Proposal Region Clustering Learning-Unsupervised Deep Learning
    Lei Li
    Xiao-li Yin
    [J]. Journal of Electrical Engineering & Technology, 2023, 18 : 1337 - 1349