Prairie Dog Optimization Algorithm with deep learning assisted based Aerial Image Classification on UAV imagery

被引:0
|
作者
Alkhalifa, Amal K. [1 ]
Saeed, Muhammad Kashif [2 ]
Othman, Kamal M. [3 ]
Ebad, Shouki A. [4 ]
Alonazi, Mohammed [5 ]
Mohamed, Abdullah [6 ]
机构
[1] Princess Nourah bint Abdulrahman Univ, Appl Coll, Dept Comp Sci & Informat Technol, POB 84428, Riyadh 11671, Saudi Arabia
[2] King Khalid Univ, Appl Coll Mahayil, Dept Comp Sci, Abha, Saudi Arabia
[3] Umm Al Qura Univ, Coll Engn & Islamic Architecture, Dept Elect Engn, Mecca, Saudi Arabia
[4] Northern Border Univ, Fac Sci, Dept Comp Sci, Ar Ar 91431, Saudi Arabia
[5] Prince Sattam bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Informat Syst, Al Kharj 16273, Saudi Arabia
[6] Future Univ Egypt, Res Ctr, New Cairo 11845, Egypt
关键词
Aerial image classification; Remote sensing; UAV; Prairie dog optimization; Deep learning;
D O I
10.1016/j.heliyon.2024.e37446
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study presents a Prairie Dog Optimization Algorithm with a Deep learning-assisted Aerial Image Classification Approach (PDODL-AICA) on UAV images. The PDODL-AICA technique exploits the optimal DL model for classifying aerial images into numerous classes. In the presented PDODL-AICA technique, the feature extraction procedure is executed using the EfficientNetB7 model. Besides, the hyperparameter tuning of the EfficientNetB7 technique uses the PDO model. The PDODL-AICA technique uses a convolutional variational autoencoder (CVAE) model to detect and classify aerial images. The performance study of the PDODL-AICA model is implemented on a benchmark UAV image dataset. The experimental values inferred the authority of the PDODLAICA approach over recent models in terms of dissimilar measures.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Genetic algorithm based deep learning model adaptation for improvising the motor imagery classification
    Vishnupriya, R.
    Robinson, Neethu
    Reddy, M. Ramasubba
    [J]. BRAIN-COMPUTER INTERFACES, 2024, 11 (03) : 98 - 109
  • [32] Deep-Learning-Based Aerial Image Classification for Emergency Response Applications using Unmanned Aerial Vehicles
    Kyrkou, Christos
    Theocharides, Theocharis
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 517 - 525
  • [33] Optimization and Application of Image Defogging Algorithm Based on Deep Learning Network
    Liao, Jianfeng
    [J]. JOURNAL OF SENSORS, 2022, 2022
  • [34] Deep learning versus Object-based Image Analysis (OBIA) in weed mapping of UAV imagery
    Huang, Huasheng
    Lan, Yubin
    Yang, Aqing
    Zhang, Yali
    Wen, Sheng
    Deng, Jizhong
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (09) : 3446 - 3479
  • [35] Federated Learning with Blockchain Assisted Image Classification for Clustered UAV Networks
    Abunadi, Ibrahim
    Althobaiti, Maha M.
    Al-Wesabi, Fahd N.
    Hilal, Anwer Mustafa
    Medani, Mohammad
    Hamza, Manar Ahmed
    Rizwanullah, Mohammed
    Zamani, Abu Serwar
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 1195 - 1212
  • [36] OBJECT BASED CLASSIFICATION OF UNMANNED AERIAL VEHICLE (UAV) IMAGERY FOR FOREST FIRES MONITORING
    Bilgilioglu, B. Baha
    Ozturk, Ozan
    Sariturk, Batuhan
    Seker, Dursun Zafer
    [J]. FRESENIUS ENVIRONMENTAL BULLETIN, 2019, 28 (02): : 1011 - 1017
  • [37] Ground target localization algorithm based on UAV aerial image analysis
    Zhao, Yan
    Zhao, Ming
    [J]. 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2019, : 24 - 27
  • [38] Automatic Segmentation of Mauritia flexuosa in Unmanned Aerial Vehicle (UAV) Imagery Using Deep Learning
    Morales, Giorgio
    Kemper, Guillermo
    Sevillano, Grace
    Arteaga, Daniel
    Ortega, Ivan
    Telles, Joel
    [J]. FORESTS, 2018, 9 (12):
  • [39] Forest Species Classification of UAV Hyperspectral Image Using Deep Learning
    Liang, Jing
    Li, Pengshuai
    Zhao, Hui
    Han, Lu
    Qu, Mingliang
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 7126 - 7130
  • [40] Hyperparameter Optimization for Deep Residual Learning in Image Classification
    Jafar, Abbas
    Myungho, Lee
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS COMPANION (ACSOS-C 2020), 2020, : 24 - 29