MONOTONICITY OF THE RATIOS OF TWO ABELIAN INTEGRALS FOR HAMILTONIAN SYSTEMS WITH PARAMETERS

被引:0
|
作者
Wang, Qiaoyun [1 ]
Wang, Na [2 ]
Sun, Xianbo [3 ]
机构
[1] Guangxi Univ, Dept Math, Nanning 530004, Guangxi, Peoples R China
[2] Beijing Informat Sci & Technol, Sch Appl Sceince, Beijing 100192, Peoples R China
[3] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Zhejiang, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Abelian integral; monotonicity; Hamiltonian system; HYPERELLIPTIC INTEGRALS; DEGREE-4; PERTURBATIONS; CRITERION; WAVES; ZEROS;
D O I
10.11948/20220349
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the monotonicity of the ratios of two Abelian integrals closed integral(gamma i(h)) ydx \ closed integral(gamma i)(h) xydx over three period annuli {gamma(i)(h)}, for i = 1, 2, 3, defined by a seventh-degree hyperelliptic Hamiltonian H(x, y) = y(2) + Psi(x) with a parameter. The parameter makes the problem more challenging to analyze. To overcome the difficulty, we apply some criterion with the help of transformations, tools in computer algebra such as boundary polynomial theory to determine the monotonicity of the ratios. Our results establish the existence and uniqueness of limit cycle bifurcated from each period annulus.
引用
下载
收藏
页码:2466 / 2487
页数:22
相关论文
共 50 条
  • [21] On First Integrals of Linear Hamiltonian Systems
    Zheglov, A. B.
    Osipov, D. V.
    DOKLADY MATHEMATICS, 2018, 98 (03) : 616 - 618
  • [22] On First Integrals of Linear Hamiltonian Systems
    A. B. Zheglov
    D. V. Osipov
    Doklady Mathematics, 2018, 98 : 616 - 618
  • [23] NUMBER OF ISOLATING INTEGRALS IN HAMILTONIAN SYSTEMS
    CONTOPOULOS, G
    GALGANI, L
    GIORGILLI, A
    PHYSICAL REVIEW A, 1978, 18 (03): : 1183 - 1189
  • [24] INVARIANT INTEGRALS OF HAMILTONIAN CONTINUOUS SYSTEMS
    GRANDORIGUAGENTI, E
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1974, 56 (01): : 65 - 71
  • [25] On two-dimensional Hamiltonian systems with sixth-order integrals of motion
    Porubov, E. O.
    Tsiganov, A., V
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 110
  • [26] First integrals of hamiltonian and non-hamiltonian systems and chaos
    Bouquet, S.
    Dewisme, A.
    Proceedings Needs on Nonlinear Evolution Equations and Dynamical Systems, 1992,
  • [27] SHARP BOUNDS OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS WITH PARAMETERS
    Sun, Xianbo
    Yang, Junmin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [28] On the zeros of the Abelian integrals for a class of Lienard systems
    Zhang, Tonghua
    Tade, Moses O.
    Tian, Yu-Chu
    PHYSICS LETTERS A, 2006, 358 (04) : 262 - 274
  • [29] The Abelian integrals of a one-parameter Hamiltonian system under polynomial perturbations
    Zhang, TH
    Chen, WC
    Han, M
    Zang, H
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (07): : 2449 - 2456
  • [30] The Abelian integrals of a one-parameter Hamiltonian system under cubic perturbations
    Zhang, TH
    Chen, WC
    Hong, Z
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (05): : 1853 - 1862