SHARP BOUNDS OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS WITH PARAMETERS

被引:0
|
作者
Sun, Xianbo [1 ]
Yang, Junmin [2 ]
机构
[1] Guangxi Univ Finance & Econ, Dept Appl Math, Nanning 530003, Guangxi, Peoples R China
[2] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Hebei, Peoples R China
关键词
Limit cycle; Lienard system; Chebyshev system; bifurcation; heteroclinc loop; QUINTIC HAMILTONIAN-SYSTEMS; DOUBLE HETEROCLINIC LOOPS; EYE-FIGURE LOOP; LIMIT-CYCLES; LIENARD SYSTEMS; CUSPIDAL LOOP; BIFURCATIONS; PERTURBATIONS; DEGREE-4; SADDLE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study four Abelian integrals over compact level curves of four sixth-degree hyper-elliptic Hamiltonians with parameters. We prove that the sharp bound of the number of zeros for each Abelian integral is 2. The proofs rely mainly on the Chebyshev criterion for Abelian integrals and asymptotic expansions of Abelian integrals.
引用
收藏
页数:12
相关论文
共 50 条