An improved estimate for the number of zeros of Abelian integrals for cubic Hamiltonians

被引:6
|
作者
Horozov, Emil [1 ,2 ]
Mihajlova, Ana [3 ]
机构
[1] Univ Sofia, Dept Math & Informat, BU-1126 Sofia, Bulgaria
[2] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[3] Univ Shumen, Dept Math & Informat, Shumen 9712, Bulgaria
关键词
HILBERTS 16TH PROBLEM; LIMIT-CYCLES; VECTOR-FIELDS; EXPONENTIAL ESTIMATE; LINEAR ESTIMATE; PERTURBATIONS; SYSTEMS;
D O I
10.1088/0951-7715/23/12/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that the real generic cubic Hamiltonian H(x, y), (x, y) is an element of R(2), possesses three saddle points and one centre. Let Sigma subset of R be the set of values h of H(x, y), for which there exists a closed component delta(h) of the level curve {H(x, y) = h}, free of critical points. In this paper, we obtain a better upper bound than previously known for the number of zeros of the Abelian integrals I (h) = integral(delta(h))[g(x, y) dx - f (x, y) dy] for h is an element of Sigma in terms of the maximum of the degrees of the polynomials f (x, y) and g(x, y).
引用
收藏
页码:3053 / 3069
页数:17
相关论文
共 50 条