Estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians with two centers

被引:12
|
作者
Zhou, Xin [1 ]
Li, Cuiping
机构
[1] Beihang Univ, LMIB, Beijing 100083, Peoples R China
关键词
Abelian integral; weakened Hilbert's 16th problem; Picard-Fuchs equation; Hamiltonian system;
D O I
10.1016/j.amc.2008.06.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give the upper bound of the number of zeros of Abelian integral I(h) =closed integral(Gamma h) P(x,y)dx - Q(x,y)dy, where Gamma(h) is the closed orbit defined by H(x,y)=-chi(2)+ lambda x(4)+y(4)=h, lambda > 0, h epsilon Sigma; Sigma is the maximal open interval on which the ovals {Gamma(h)} exist; P(x,y) and Q(x,y) are real polynomials in x and y of degree at most n. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:202 / 209
页数:8
相关论文
共 50 条
  • [1] Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians
    Zhao, YL
    Zhang, ZF
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 155 (01) : 73 - 88
  • [2] On the number of zeros of Abelian integrals for a kind of quartic Hamiltonians
    Wu, Juanjuan
    Zhang, Yongkang
    Li, Cuiping
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 : 329 - 335
  • [3] LINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS
    Nyamoradi, N.
    Zangeneh, H. R. Z.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (02): : 101 - 116
  • [4] Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians
    Horozov, E
    Iliev, ID
    [J]. NONLINEARITY, 1998, 11 (06) : 1521 - 1537
  • [5] An improved estimate for the number of zeros of Abelian integrals for cubic Hamiltonians
    Horozov, Emil
    Mihajlova, Ana
    [J]. NONLINEARITY, 2010, 23 (12) : 3053 - 3069
  • [6] On the number of zeros of Abelian integrals for a kind of quadratic reversible centers*
    Wang, Yanjie
    Zhang, Beibei
    Cao, Bo
    [J]. AIMS MATHEMATICS, 2023, 8 (10): : 23756 - 23770
  • [7] Linear Estimate for the Number of Zeros of Abelian Integrals
    Dmitry Novikov
    Sergey Malev
    [J]. Qualitative Theory of Dynamical Systems, 2017, 16 : 689 - 696
  • [8] Linear Estimate for the Number of Zeros of Abelian Integrals
    Novikov, Dmitry
    Malev, Sergey
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2017, 16 (03) : 689 - 696
  • [9] An explicit linear estimate for the number of zeros of Abelian integrals
    Binyamini, Gal
    Dor, Gal
    [J]. NONLINEARITY, 2012, 25 (06) : 1931 - 1946
  • [10] A LINEAR ESTIMATION TO THE NUMBER OF ZEROS FOR ABELIAN INTEGRALS IN A KIND OF QUADRATIC REVERSIBLE CENTERS OF GENUS ONE
    Hong, Lijun
    Hong, Xiaochun
    Lu, Junliang
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (04): : 1534 - 1544