Covering the edges of a graph with triangles

被引:0
|
作者
Bujtas, Csilla [1 ,2 ,3 ]
Davoodi, Akbar [4 ]
Ding, Laihao [5 ,6 ]
Gyori, Ervin [7 ,9 ]
Tuza, Zsolt [8 ,9 ]
Yang, Donglei [10 ]
机构
[1] Univ Ljubljana, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Pannonia, Veszprem, Hungary
[4] Czech Acad Sci, Inst Comp Sci, Vodarenskou vezi 2, Prague 18207, Czech Republic
[5] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
[6] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan, Peoples R China
[7] Cent European Univ, Budapest, Hungary
[8] Univ Pannonia, Dept Comp Sci & Syst Technol, Veszprem, Hungary
[9] HUN REN Alfred Reny Inst Math, Budapest, Hungary
[10] Shandong Univ, Sch Math, Jinan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Edge-disjoint triangles; Edge clique covering; Nordhaus-Gaddum inequality;
D O I
10.1016/j.disc.2024.114226
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a graph G, let rho(Delta)(G) denote the minimum size of a set of edges and triangles that cover all edges of G, and let alpha(1)(G) be the maximum size of an edge set that contains at most one edge from each triangle. Motivated by a question of Erdos, Gallai, and Tuza, we study the relationship between rho(Delta)(G) and alpha(1)(G) and establish a sharp upper bound on rho(Delta)(G). We also prove Nordhaus-Gaddum-type inequalities for the considered invariants. (c) 2024 The Author(s).
引用
收藏
页数:8
相关论文
共 50 条