Mycoplasma pneumoniae-induced Kawasaki disease via PINK1/ Parkin-mediated mitophagy

被引:0
|
作者
Wang, Chengyi [1 ,2 ,3 ]
Zhang, Huijie [2 ,3 ]
Zhang, Jinyan [1 ]
Hong, Zesheng [1 ]
Miao, Chong [3 ]
Wang, Tengyang [2 ]
Lin, Han [2 ]
Li, Yinglin [4 ]
Liu, Guanghua [2 ,3 ]
机构
[1] Fujian Med Univ, Coll Clin Med Obstet & Gynecol & Pediat, Fuzhou 350001, Peoples R China
[2] Fujian Med Univ, Fujian Childrens Hosp, Coll Clin Med Obstet & Gynecol & Pediat, Dept Pediat,Fujian Branch,Shanghai Childrens Med C, 966 HengYuRd, Fuzhou 350001, Fujian, Peoples R China
[3] Fujian Med Univ, Fujian Matern & Child Hlth Hosp, Coll Clin Med Obstet & Gynecol & Pediat, Fuzhou 350001, Peoples R China
[4] Putian Univ, Affiliated Hosp Grp, Pediat Intens Care Unit, 966 DongZhenRd, Putian 351100, Fujian, Peoples R China
关键词
Kawasaki disease; Mycoplasma pneumoniae; Mitophagy; PINK1; Parkin; MITOCHONDRIAL; LESIONS;
D O I
10.1016/j.yexcr.2024.114182
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Kawasaki disease (KD) is a systemic vasculitis with an unknown cause that primarily affects children. The objective of this study was to explore the function and underlying mechanism of mitophagy in Mycoplasma pneumoniae (MP)-induced KD. To create MP-induced KD models, Human coronary endothelial cells (HCAECs) and DBA/2 mice were employed and treated with Mp-Lipid-associated membrane proteins (LAMPs). Lactate dehydrogenase (LDH) levels were tested to determine cellular damage or death. The inflammatory cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 were measured using the Enzyme-Linked Immunosorbent Assay (ELISA) method. RT-qPCR and Western blotting were used to determine the expression of Intercellular Adhesion Molecule(ICAM)1, vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase(iNOS), LC3, p62, PINK1(a mitochondrial serine/threonine-protein kinase), and PARKIN(a cytosolic E3-ubiquitin ligase). The adenosine triphosphate (ATP), reactive oxygen species (ROS), and mitochondrial membrane potential(MMP) levels were measured to determine mitochondrial function. Mitophagy was investigated using immunofluorescence and a mitophagy detection test. Autophagosome and mitochondrial morphology were examined using transmission electron microscopy. To identify inflammatory cell infiltration, hematoxylin and eosin staining was utilized. MpLAMPs increased the levels of TNF-alpha, IL-6, ICAM-1, VCAM-1, and iNOS in an HCAEC cell model, along with LDH release. After Mp-LAMPs exposure, there was a rise in LC3 and a reduction in p62. Meanwhile, the expression of PINK1 and Parkin was increased. Cyclosporin A dramatically increased ATP synthesis and MMP in HCAEC cells treated with Mp-LAMPs, while suppressing ROS generation, demonstrating excessive mitophagy-related mitochondrial dysfunction. Additionally, neither body weight nor artery tissue were affected due to PINK1 and Parkin suppression Cyclosporin A in Mp-LAMPs-treated mice. These findings indicated that PINK1/Parkin-mediated mitophagy inhibition may be a therapeutic target for MP-induced KD.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] NDP52 acts as a redox sensor in PINK1/Parkin-mediated mitophagy
    Kataura, Tetsushi
    Otten, Elsje G.
    Rabanal-Ruiz, Yoana
    Adriaenssens, Elias
    Urselli, Francesca
    Scialo, Filippo
    Fan, Lanyu
    Smith, Graham R.
    Dawson, William M.
    Chen, Xingxiang
    Yue, Wyatt W.
    Bronowska, Agnieszka K.
    Carroll, Bernadette
    Martens, Sascha
    Lazarou, Michael
    Korolchuk, Viktor, I
    EMBO JOURNAL, 2023, 42 (05):
  • [22] Gefitinib facilitates PINK1/Parkin-mediated mitophagy by enhancing mitochondrial recruitment of OPTN
    Li, Ningning
    Sun, Shan
    Ma, Guoqiang
    Hou, Hongyu
    Ma, Qilian
    Zhang, Li
    Zhang, Zengli
    Wang, Hongfeng
    Ying, Zheng
    FUNDAMENTAL RESEARCH, 2022, 2 (05): : 807 - 816
  • [23] PINK1-and Parkin-mediated mitophagy at a glance
    Jin, Seok Min
    Youle, Richard J.
    JOURNAL OF CELL SCIENCE, 2012, 125 (04) : 795 - 799
  • [24] Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy
    Hongguang Chen
    Huaying Lin
    Beibei Dong
    Yaoqi Wang
    Yonghao Yu
    Keliang Xie
    Inflammation Research, 2021, 70 : 915 - 930
  • [25] Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy
    Chen, Hongguang
    Lin, Huaying
    Dong, Beibei
    Wang, Yaoqi
    Yu, Yonghao
    Xie, Keliang
    INFLAMMATION RESEARCH, 2021, 70 (08) : 915 - 930
  • [26] PINK1/Parkin-mediated mitophagy modulates cadmium-induced apoptosis in rat cerebral cortical neurons
    Wen, Shuangquan
    Wang, Li
    Zhang, Chaofan
    Song, Ruilong
    Zou, Hui
    Gu, Jianhong
    Liu, Xuezhong
    Bian, Jianchun
    Liu, Zongping
    Yuan, Yan
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2022, 244
  • [27] PINK1/Parkin-mediated mitophagy inhibits warangalone-induced mitochondrial apoptosis in breast cancer cells
    Mao, Lianzhi
    Liu, Huahuan
    Zhang, Rongjun
    Deng, Yudi
    Hao, Yuting
    Liao, Wenzhen
    Yuan, Miaomiao
    Sun, Suxia
    AGING-US, 2021, 13 (09): : 12955 - 12972
  • [28] Type 2 diabetes-induced hyposalivation of the submandibular gland through PINK1/Parkin-mediated mitophagy
    Xiang, Ruo-Lan
    Huang, Yan
    Zhang, Yan
    Cong, Xin
    Zhang, Zhe-Jing
    Wu, Li-Ling
    Yu, Guang-Yan
    JOURNAL OF CELLULAR PHYSIOLOGY, 2020, 235 (01) : 232 - 244
  • [29] PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury
    Wang, Ying
    Tang, Chengyuan
    Cai, Juan
    Chen, Guochun
    Zhang, Dongshan
    Zhang, Zhuohua
    Dong, Zheng
    CELL DEATH & DISEASE, 2018, 9
  • [30] PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury
    Ying Wang
    Chengyuan Tang
    Juan Cai
    Guochun Chen
    Dongshan Zhang
    Zhuohua Zhang
    Zheng Dong
    Cell Death & Disease, 9