Mycoplasma pneumoniae-induced Kawasaki disease via PINK1/ Parkin-mediated mitophagy

被引:0
|
作者
Wang, Chengyi [1 ,2 ,3 ]
Zhang, Huijie [2 ,3 ]
Zhang, Jinyan [1 ]
Hong, Zesheng [1 ]
Miao, Chong [3 ]
Wang, Tengyang [2 ]
Lin, Han [2 ]
Li, Yinglin [4 ]
Liu, Guanghua [2 ,3 ]
机构
[1] Fujian Med Univ, Coll Clin Med Obstet & Gynecol & Pediat, Fuzhou 350001, Peoples R China
[2] Fujian Med Univ, Fujian Childrens Hosp, Coll Clin Med Obstet & Gynecol & Pediat, Dept Pediat,Fujian Branch,Shanghai Childrens Med C, 966 HengYuRd, Fuzhou 350001, Fujian, Peoples R China
[3] Fujian Med Univ, Fujian Matern & Child Hlth Hosp, Coll Clin Med Obstet & Gynecol & Pediat, Fuzhou 350001, Peoples R China
[4] Putian Univ, Affiliated Hosp Grp, Pediat Intens Care Unit, 966 DongZhenRd, Putian 351100, Fujian, Peoples R China
关键词
Kawasaki disease; Mycoplasma pneumoniae; Mitophagy; PINK1; Parkin; MITOCHONDRIAL; LESIONS;
D O I
10.1016/j.yexcr.2024.114182
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Kawasaki disease (KD) is a systemic vasculitis with an unknown cause that primarily affects children. The objective of this study was to explore the function and underlying mechanism of mitophagy in Mycoplasma pneumoniae (MP)-induced KD. To create MP-induced KD models, Human coronary endothelial cells (HCAECs) and DBA/2 mice were employed and treated with Mp-Lipid-associated membrane proteins (LAMPs). Lactate dehydrogenase (LDH) levels were tested to determine cellular damage or death. The inflammatory cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 were measured using the Enzyme-Linked Immunosorbent Assay (ELISA) method. RT-qPCR and Western blotting were used to determine the expression of Intercellular Adhesion Molecule(ICAM)1, vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase(iNOS), LC3, p62, PINK1(a mitochondrial serine/threonine-protein kinase), and PARKIN(a cytosolic E3-ubiquitin ligase). The adenosine triphosphate (ATP), reactive oxygen species (ROS), and mitochondrial membrane potential(MMP) levels were measured to determine mitochondrial function. Mitophagy was investigated using immunofluorescence and a mitophagy detection test. Autophagosome and mitochondrial morphology were examined using transmission electron microscopy. To identify inflammatory cell infiltration, hematoxylin and eosin staining was utilized. MpLAMPs increased the levels of TNF-alpha, IL-6, ICAM-1, VCAM-1, and iNOS in an HCAEC cell model, along with LDH release. After Mp-LAMPs exposure, there was a rise in LC3 and a reduction in p62. Meanwhile, the expression of PINK1 and Parkin was increased. Cyclosporin A dramatically increased ATP synthesis and MMP in HCAEC cells treated with Mp-LAMPs, while suppressing ROS generation, demonstrating excessive mitophagy-related mitochondrial dysfunction. Additionally, neither body weight nor artery tissue were affected due to PINK1 and Parkin suppression Cyclosporin A in Mp-LAMPs-treated mice. These findings indicated that PINK1/Parkin-mediated mitophagy inhibition may be a therapeutic target for MP-induced KD.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Pink1/Parkin-Mediated Mitophagy Regulated the Apoptosis of Dendritic Cells in Sepsis
    Zhang, Yaolu
    Chen, Longwang
    Luo, Yinan
    Wang, Kang
    Liu, Xinyong
    Xiao, Zhong
    Zhao, Guangju
    Yao, Yongming
    Lu, Zhongqiu
    INFLAMMATION, 2022, 45 (03) : 1374 - 1387
  • [12] Salidroside Protects Dopaminergic Neurons by Enhancing PINK1/Parkin-Mediated Mitophagy
    Li, Ruru
    Chen, Jianzong
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2019, 2019
  • [13] Lactobacillus salivarius Ameliorates AFB1-induced hepatotoxicity via PINK1/Parkin-mediated mitophagy in Geese
    Qiu, Zhi
    Wang, Huiying
    Li, Guangquan
    Liu, Yi
    Wang, Xianze
    Yang, Junhua
    Wang, Xichun
    He, Daqian
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2024, 280
  • [14] The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations
    Geisler, Sven
    Holmstroem, Kira M.
    Treis, Angela
    Skujat, Diana
    Weber, Stephanie S.
    Fiesel, Fabienne C.
    Kahle, Philipp J.
    Springer, Wolfdieter
    AUTOPHAGY, 2010, 6 (07) : 871 - 878
  • [15] Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy
    Ivankovic, Davor
    Chau, Kai-Yin
    Schapira, Anthony H. V.
    Gegg, Matthew E.
    JOURNAL OF NEUROCHEMISTRY, 2016, 136 (02) : 388 - 402
  • [16] PINK1/Parkin-mediated mitophagy inhibits osteoblast apoptosis induced by advanced oxidation protein products
    Li, Wei
    Jiang, Wang-Sheng
    Su, Ya-Ru
    Tu, Ke-Wu
    Zou, Lin
    Liao, Cong-Rui
    Wu, Qian
    Wang, Zi-Han
    Zhong, Zhao-Ming
    Chen, Jian-Ting
    Zhu, Si-Yuan
    CELL DEATH & DISEASE, 2023, 14 (02)
  • [17] PINK1/Parkin-mediated mitophagy mitigates T-2 toxin-induced nephrotoxicity
    Zhang, Xuliang
    Du, Jiayu
    Li, Bo
    Huo, Siming
    Zhang, Jian
    Cui, Yilong
    Song, Miao
    Shao, Bing
    Li, Yanfei
    FOOD AND CHEMICAL TOXICOLOGY, 2022, 164
  • [18] PINK1/Parkin-mediated mitophagy enhances the survival of Staphylococcus aureus in bovine macrophages
    Zhou, Xi
    Liu, Kangjun
    Li, Jianji
    Cui, Luying
    Dong, Junsheng
    Li, Jun
    Meng, Xia
    Zhu, Guoqiang
    Wang, Heng
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2023, 27 (03) : 412 - 421
  • [19] PINK1/Parkin-mediated mitophagy inhibits osteoblast apoptosis induced by advanced oxidation protein products
    Wei Li
    Wang-Sheng Jiang
    Ya-Ru Su
    Ke-Wu Tu
    Lin Zou
    Cong-Rui Liao
    Qian Wu
    Zi-Han Wang
    Zhao-Ming Zhong
    Jian-Ting Chen
    Si-Yuan Zhu
    Cell Death & Disease, 14
  • [20] Rotenone-induced PINK1/Parkin-mediated mitophagy: establishing a silkworm model for Parkinson's disease potential
    Zhang, Hantao
    Yang, Jinyue
    Guo, Yinglu
    Lue, Peng
    Gong, Xun
    Chen, Keping
    Li, Xiubin
    Tang, Min
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2024, 17