Local well-posedness of abstract hyperbolic equation with Lipschitz perturbation and non-autonomous operator

被引:0
|
作者
Hu, Meng [1 ]
Ma, Qiaozhen [1 ]
Yang, Xin-Guang [2 ]
Yuan, Jinyun [2 ,3 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
[2] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
[3] Dongguan Univ Technol, Dept Math, Dongguan, Peoples R China
关键词
Lipschitz perturbation; Non-autonomous operator; Local well-posedness;
D O I
10.1016/j.aml.2024.109248
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the local well-posedness for the homogeneous abstract problem, the existence and uniqueness of the local mild and classical solutions have been presented by using Kato's variable norm technique for the Cauchy problem of abstract hyperbolic equation with Lipschitz perturbation and non-autonomous operator.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Local well-posedness and quantitative ill-posedness for the Ostrovsky equation
    Isaza, Pedro
    Mejia, Jorge
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) : 2306 - 2316
  • [42] Well-posedness results for the wave equation generated by the Bessel operator
    Bekbolat, B.
    Tokmagambetov, N.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2021, 101 (01): : 11 - 16
  • [43] Local well-posedness of a critical inhomogeneous Schrodinger equation
    Saanouni, Tarek
    Peng, Congming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 10256 - 10273
  • [44] LOCAL WELL-POSEDNESS FOR THE INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATION
    Aloui, Lassaad
    Tayachi, Slim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (11) : 5409 - 5437
  • [45] The well-posedness of local solutions for a generalized Novikov equation
    Shaoyong Lai
    Feng Zhang
    Hanlei Hu
    Collectanea Mathematica, 2014, 65 : 257 - 271
  • [46] Sharp local well-posedness for the "good" Boussinesq equation
    Kishimoto, Nobu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (06) : 2393 - 2433
  • [47] Local Well-Posedness of an Approximate Equation for SQG Fronts
    John K. Hunter
    Jingyang Shu
    Qingtian Zhang
    Journal of Mathematical Fluid Mechanics, 2018, 20 : 1967 - 1984
  • [48] The well-posedness of local solutions for a generalized Novikov equation
    Lai, Shaoyong
    Zhang, Feng
    Hu, Hanlei
    COLLECTANEA MATHEMATICA, 2014, 65 (02) : 257 - 271
  • [49] Local well-posedness for the Maxwell-Schrodinger equation
    Nakamura, M
    Wada, T
    MATHEMATISCHE ANNALEN, 2005, 332 (03) : 565 - 604
  • [50] Local Well-Posedness of an Approximate Equation for SQG Fronts
    Hunter, John K.
    Shu, Jingyang
    Zhang, Qingtian
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (04) : 1967 - 1984