Local well-posedness of abstract hyperbolic equation with Lipschitz perturbation and non-autonomous operator

被引:0
|
作者
Hu, Meng [1 ]
Ma, Qiaozhen [1 ]
Yang, Xin-Guang [2 ]
Yuan, Jinyun [2 ,3 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
[2] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Peoples R China
[3] Dongguan Univ Technol, Dept Math, Dongguan, Peoples R China
关键词
Lipschitz perturbation; Non-autonomous operator; Local well-posedness;
D O I
10.1016/j.aml.2024.109248
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the local well-posedness for the homogeneous abstract problem, the existence and uniqueness of the local mild and classical solutions have been presented by using Kato's variable norm technique for the Cauchy problem of abstract hyperbolic equation with Lipschitz perturbation and non-autonomous operator.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A Note on the Local Well-Posedness for the Whitham Equation
    Ehrnstrom, Mats
    Escher, Joachim
    Pei, Long
    ELLIPTIC AND PARABOLIC EQUATIONS, 2015, 119 : 63 - 75
  • [32] Well-posedness of a non-local abstract Cauchy problem with a singular integral
    Jiang, Haiyan
    Lu, Tiao
    Zhu, Xiangjiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (01) : 77 - 93
  • [33] Well-posedness of a non-local abstract Cauchy problem with a singular integral
    Haiyan Jiang
    Tiao Lu
    Xiangjiang Zhu
    Frontiers of Mathematics in China, 2019, 14 : 77 - 93
  • [34] Local and global well-posedness for the Ostrovsky equation
    Linares, F
    Milanés, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (02) : 325 - 340
  • [35] LOCAL WELL-POSEDNESS OF THE EPDIFF EQUATION: A SURVEY
    Kolev, Boris
    JOURNAL OF GEOMETRIC MECHANICS, 2017, 9 (02): : 167 - 189
  • [36] Local well-posedness of a quasilinear wave equation
    Doerfler, Willy
    Gerner, Hannes
    Schnaubelt, Roland
    APPLICABLE ANALYSIS, 2016, 95 (09) : 2110 - 2123
  • [38] Well-posedness for the abstract Blackstock-Crighton-Westervelt equation
    Gambera, Laura R.
    Lizama, Carlos
    Prokopczyk, Andrea
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) : 313 - 337
  • [39] Well-Posedness of Mixed Problems for Multidimensional Hyperbolic Equations with Wave Operator
    S. A. Aldashev
    Ukrainian Mathematical Journal, 2017, 69 : 1154 - 1163
  • [40] Well-Posedness of Mixed Problems for Multidimensional Hyperbolic Equations with Wave Operator
    Aldashev, S. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2017, 69 (07) : 1154 - 1163