Advanced biomimetic design strategies for porous structures promoting bone integration with additive-manufactured Ti6Al4V scaffolds

被引:0
|
作者
Li, Yongyue [1 ]
Han, Qing [1 ]
Chen, Hao [1 ]
Yang, Wenbo [1 ]
Xu, Yongjun [2 ]
Zhang, Yongqi [3 ]
Zhang, Jiangbo [1 ]
Liu, Li [1 ]
Zhang, Weilong [1 ]
Liu, Hao [1 ]
Chen, Bingpeng [1 ]
Wang, Jincheng [1 ]
机构
[1] Second Hosp Jilin Univ, Dept Orthoped, Changchun 130041, Peoples R China
[2] Wangqing Cty Peoples Hosp, Yanji 136200, Peoples R China
[3] Second Hosp Jilin Univ, Dept Nephrol & Rheumatol, Changchun 130041, Peoples R China
关键词
Porous scaffold; Implant; Gradient; Ti6Al4V; Bone ingrowth; OF-THE-ART; PORE-SIZE; OSTEOGENIC DIFFERENTIATION; MECHANICAL-PROPERTIES; ALLOY IMPLANTS; FABRICATION; TI-6AL-4V; TITANIUM; STEM; GEOMETRY;
D O I
10.1016/j.jmrt.2024.08.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The natural bone structure exhibits a radial gradient with dense cortical bone externally and porous cancellous bone internally. However, previous studies proposing scaffold designs have predominantly focused on homogeneous porous structures. Moreover, no consensus exists on the optimal structure for gradient porous scaffolds. Our scaffold closely imitated the natural bone structure by incorporating a gradient of pillar diameters. Additionally, we introduced a inverse gradient structure and three uniform diameter pillar structures (400 mu m, 600 mu m, and 1000 mu m) for comparative analysis. Mechanical testing revealed that the compressive strength and elastic modulus of the Ti6Al4V porous scaffolds gradually increased with an increase in pillar diameter. In vitro experiments demonstrated that both the biomimetic gradient and inverse gradient scaffolds promoted osteogenic differentiation, with higher ALP activity (alkaline phosphatase) and osteogenesis-related gene expression compared to the uniform pillar structure scaffolds. The in vivo experiments confirmed these results, highlighting the superior ability of the biomimetic gradient Ti6Al4V porous scaffold to induce new bone formation. Based on our findings, we suggest that the optimal porous structure should have fine-diameter pillars (approximately 400 mu m) internally to enhance cell penetration, while coarse-diameter pillars (approximately 800 mu m) should be used externally to increase the cell attachment area and enhance mechanical strength. Overall, our study contributes to the field of bone tissue engineering by providing a biomimetic scaffold design that closely imitates the structure of natural bone and promotes osteogenic activity.
引用
收藏
页码:1901 / 1915
页数:15
相关论文
共 50 条
  • [41] Mechanical properties of additively manufactured variable lattice structures of Ti6Al4V
    Traxel, Kellen D.
    Groden, Cory
    Valladares, Jesus
    Bandyopadhyay, Amit
    Materials Science and Engineering: A, 2021, 809
  • [42] Automated image mapping and quantification of microstructure heterogeneity in additive manufactured Ti6Al4V
    Zhao, Hao
    Ho, Alistair
    Davis, Alec
    Antonysamy, Alphons
    Prangnell, Philip
    MATERIALS CHARACTERIZATION, 2019, 147 : 131 - 145
  • [43] Research progress of damage tolerance properties of additive manufactured Ti6Al4V alloy
    Yu W.-J.
    Rong P.
    Li R.-Q.
    Cheng X.
    Gao C.-Y.
    Xu W.-W.
    Ran X.-Z.
    Liu D.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2023, 33 (02): : 353 - 371
  • [44] Analysis of tool wear in cryogenic machining of additive manufactured Ti6Al4V alloy
    Bordin, A.
    Bruschi, S.
    Ghiotti, A.
    Bariani, P. F.
    WEAR, 2015, 328 : 89 - 99
  • [45] Effect of surface treatment on the fatigue strength of additive manufactured Ti6Al4V alloy
    Navarro, Carlos
    Vazquez, Jesus
    Dominguez, Jaime
    Perinan, Antonio
    Herrera Garcia, Marta
    Lasagni, Fernando
    Bernarding, Simon
    Slawik, Sebastian
    Muecklich, Frank
    Boby, Francisco
    Hackel, Lloyd
    FRATTURA ED INTEGRITA STRUTTURALE, 2020, 14 (53): : 337 - 344
  • [46] Mechanical properties of wire arc additive manufactured components made of Ti6Al4V
    Staufer H.
    Grunwald R.
    Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2020, 89 (04): : 252 - 257
  • [47] Effect of HIP Defects on the Mechanical Properties of Additive Manufactured Ti6Al4V Alloy
    Dolev, Ohad
    Ron, Tomer
    Aghion, Eli
    Shirizly, Amnon
    METALS, 2022, 12 (07)
  • [48] Laser Finishing of Ti6Al4V Additive Manufactured Parts by Electron Beam Melting
    Genna, Silvio
    Rubino, Gianluca
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [49] Corrosion behavior of Ti6Al4V alloy for blomedicals application manufactured by Additive Manufacturing
    Testa, C.
    Cabrini, M.
    Lorenzi, S.
    Pastore, T.
    Manfredi, D.
    Lorusso, M.
    Calignano, F.
    Lombardi, M.
    METALLURGIA ITALIANA, 2020, 112 (02): : 6 - 11
  • [50] Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces
    Kahlin, M.
    Ansell, H.
    Moverare, J. J.
    INTERNATIONAL JOURNAL OF FATIGUE, 2017, 101 : 51 - 60