Field-Based Soybean Flower and Pod Detection Using an Improved YOLOv8-VEW Method

被引:3
|
作者
Zhao, Kunpeng [1 ]
Li, Jinyang [1 ]
Shi, Wenqiang [1 ]
Qi, Liqiang [1 ]
Yu, Chuntao [1 ]
Zhang, Wei [1 ,2 ]
机构
[1] Heilongjiang Bayi Agr Univ, Coll Engn, Daqing 163319, Peoples R China
[2] Heilongjiang Prov Conservat Tillage Engn Technol R, Daqing 163319, Peoples R China
来源
AGRICULTURE-BASEL | 2024年 / 14卷 / 08期
关键词
deep learning; soybean flower; soybean pod; computer vision; YOLOv8;
D O I
10.3390/agriculture14081423
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Changes in soybean flower and pod numbers are important factors affecting soybean yields. Obtaining the number of flowers and pods, as well as fallen flowers and pods, quickly and accurately is crucial for soybean variety breeding and high-quality and high-yielding production. This is especially challenging in the natural field environment. Therefore, this study proposed a field soybean flower- and pod-detection method based on an improved network model (YOLOv8-VEW). VanillaNet is used as the backbone feature-extraction network for YOLOv8, and the EMA attention mechanism module is added to C2f, replacing the CioU function with the WIoU position loss function. The results showed that the F1, mAP, and FPS (frames per second) of the YOLOv8-VEW model were 0.95, 96.9%, and 90 FPS, respectively, which were 0.05, 2.4%, and 24 FPS better than those of the YOLOv8 model. The model was used to compare soybean flower and pod counts with manual counts, and its R2 for flowers and pods was 0.98311 and 0.98926, respectively, achieving rapid detection of soybean flower pods in the field. This study can provide reliable technical support for detecting soybean flowers and pod numbers in the field and selecting high-yielding varieties.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A Pineapple Target Detection Method in a Field Environment Based on Improved YOLOv7
    Lai, Yuhao
    Ma, Ruijun
    Chen, Yu
    Wan, Tao
    Jiao, Rui
    He, Huandong
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [32] ESFD-YOLOv8n: Early Smoke and Fire Detection Method Based on an Improved YOLOv8n Model
    Mamadaliev, Dilshodjon
    Touko, Philippe Lyonel Mbouembe
    Kim, Jae-Ho
    Kim, Suk-Chan
    FIRE-SWITZERLAND, 2024, 7 (09):
  • [33] Face Mask Detection Based on Improved YOLOv8
    Lin, Bingyan
    Hou, Maidi
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 365 - 375
  • [34] Ship Detection Based on Improved YOLOv8 Algorithm
    Cao, Xintong
    Shen, Jiayu
    Wang, Tao
    Zhang, Chenxu
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 20 - 23
  • [35] YOLOv8-UCB: Visual Detection of Pouch Battery Using Improved YOLOv8
    Hao, Hao
    Yu, Xiang
    IEEE ACCESS, 2024, 12 : 194899 - 194910
  • [36] Vehicle Detection and Tracking Based on Improved YOLOv8
    Liu, Yunxiang
    Shen, Shujun
    IEEE ACCESS, 2025, 13 : 24793 - 24803
  • [37] Detection of Coal and Gangue Based on Improved YOLOv8
    Zeng, Qingliang
    Zhou, Guangyu
    Wan, Lirong
    Wang, Liang
    Xuan, Guantao
    Shao, Yuanyuan
    SENSORS, 2024, 24 (04)
  • [38] A wildfire smoke detection based on improved YOLOv8
    Zhou, Jieyang
    Li, Yang
    Yin, Pengfei
    International Journal of Information and Communication Technology, 2024, 25 (06) : 52 - 67
  • [39] Safety Helmet Detection Based on Improved YOLOv8
    Lin, Bingyan
    IEEE ACCESS, 2024, 12 : 28260 - 28272
  • [40] RVDR-YOLOv8: A Weed Target Detection Model Based on Improved YOLOv8
    Ding, Yuanming
    Jiang, Chen
    Song, Lin
    Liu, Fei
    Tao, Yunrui
    ELECTRONICS, 2024, 13 (11)