Field-Based Soybean Flower and Pod Detection Using an Improved YOLOv8-VEW Method

被引:3
|
作者
Zhao, Kunpeng [1 ]
Li, Jinyang [1 ]
Shi, Wenqiang [1 ]
Qi, Liqiang [1 ]
Yu, Chuntao [1 ]
Zhang, Wei [1 ,2 ]
机构
[1] Heilongjiang Bayi Agr Univ, Coll Engn, Daqing 163319, Peoples R China
[2] Heilongjiang Prov Conservat Tillage Engn Technol R, Daqing 163319, Peoples R China
来源
AGRICULTURE-BASEL | 2024年 / 14卷 / 08期
关键词
deep learning; soybean flower; soybean pod; computer vision; YOLOv8;
D O I
10.3390/agriculture14081423
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Changes in soybean flower and pod numbers are important factors affecting soybean yields. Obtaining the number of flowers and pods, as well as fallen flowers and pods, quickly and accurately is crucial for soybean variety breeding and high-quality and high-yielding production. This is especially challenging in the natural field environment. Therefore, this study proposed a field soybean flower- and pod-detection method based on an improved network model (YOLOv8-VEW). VanillaNet is used as the backbone feature-extraction network for YOLOv8, and the EMA attention mechanism module is added to C2f, replacing the CioU function with the WIoU position loss function. The results showed that the F1, mAP, and FPS (frames per second) of the YOLOv8-VEW model were 0.95, 96.9%, and 90 FPS, respectively, which were 0.05, 2.4%, and 24 FPS better than those of the YOLOv8 model. The model was used to compare soybean flower and pod counts with manual counts, and its R2 for flowers and pods was 0.98311 and 0.98926, respectively, achieving rapid detection of soybean flower pods in the field. This study can provide reliable technical support for detecting soybean flowers and pod numbers in the field and selecting high-yielding varieties.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Research on mine personnel target detection method based on improved YOLOv8
    Jin, Huawei
    Ren, Suisui
    Li, Shuo
    Liu, Wenjian
    MEASUREMENT, 2025, 245
  • [22] CES-YOLOv8: Strawberry Maturity Detection Based on the Improved YOLOv8
    Chen, Yongkuai
    Xu, Haobin
    Chang, Pengyan
    Huang, Yuyan
    Zhong, Fenglin
    Jia, Qi
    Chen, Lingxiao
    Zhong, Huaiqin
    Liu, Shuang
    AGRONOMY-BASEL, 2024, 14 (07):
  • [23] A Raisin Foreign Object Target Detection Method Based on Improved YOLOv8
    Ning, Meng
    Ma, Hongrui
    Wang, Yuqian
    Cai, Liyang
    Chen, Yiliang
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [24] Wheat Seed Detection and Counting Method Based on Improved YOLOv8 Model
    Ma, Na
    Su, Yaxin
    Yang, Lexin
    Li, Zhongtao
    Yan, Hongwen
    SENSORS, 2024, 24 (05)
  • [25] Improved lightweight infrared road target detection method based on YOLOv8
    Yao, Jialong
    Xu, Sheng
    Feijiang, Huang
    Su, Chengyue
    INFRARED PHYSICS & TECHNOLOGY, 2024, 141
  • [26] Detection and Counting Model of Soybean at the Flowering and Podding Stage in the Field Based on Improved YOLOv5
    Yue, Yaohua
    Zhang, Wei
    AGRICULTURE-BASEL, 2025, 15 (05):
  • [27] An Improved Bird Detection Method Using Surveillance Videos from Poyang Lake Based on YOLOv8
    Ma, Jianchao
    Guo, Jiayuan
    Zheng, Xiaolong
    Fang, Chaoyang
    ANIMALS, 2024, 14 (23):
  • [28] A Lightweight Method for Road Damage Detection Based on Improved YOLOv8n
    Li, Xudong
    Zhang, Yujun
    ENGINEERING LETTERS, 2025, 33 (01) : 114 - 123
  • [29] Bolt Loosening Detection Method Based on Improved YOLOv8 and Image Matching
    Jiang, Peihe
    Geng, Yuhang
    Sang, Zhongqi
    Lin, Lifeng
    IEEE ACCESS, 2025, 13 : 1133 - 1146
  • [30] Ship target detection method based on improved YOLOv8 for SAR images
    Li, Xue
    You, Zhichao
    Gao, Hengkai
    Deng, Haorong
    Lai, Zuomei
    Shao, Hanshu
    REMOTE SENSING LETTERS, 2025, 16 (01) : 89 - 99