Field-Based Soybean Flower and Pod Detection Using an Improved YOLOv8-VEW Method

被引:3
|
作者
Zhao, Kunpeng [1 ]
Li, Jinyang [1 ]
Shi, Wenqiang [1 ]
Qi, Liqiang [1 ]
Yu, Chuntao [1 ]
Zhang, Wei [1 ,2 ]
机构
[1] Heilongjiang Bayi Agr Univ, Coll Engn, Daqing 163319, Peoples R China
[2] Heilongjiang Prov Conservat Tillage Engn Technol R, Daqing 163319, Peoples R China
来源
AGRICULTURE-BASEL | 2024年 / 14卷 / 08期
关键词
deep learning; soybean flower; soybean pod; computer vision; YOLOv8;
D O I
10.3390/agriculture14081423
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Changes in soybean flower and pod numbers are important factors affecting soybean yields. Obtaining the number of flowers and pods, as well as fallen flowers and pods, quickly and accurately is crucial for soybean variety breeding and high-quality and high-yielding production. This is especially challenging in the natural field environment. Therefore, this study proposed a field soybean flower- and pod-detection method based on an improved network model (YOLOv8-VEW). VanillaNet is used as the backbone feature-extraction network for YOLOv8, and the EMA attention mechanism module is added to C2f, replacing the CioU function with the WIoU position loss function. The results showed that the F1, mAP, and FPS (frames per second) of the YOLOv8-VEW model were 0.95, 96.9%, and 90 FPS, respectively, which were 0.05, 2.4%, and 24 FPS better than those of the YOLOv8 model. The model was used to compare soybean flower and pod counts with manual counts, and its R2 for flowers and pods was 0.98311 and 0.98926, respectively, achieving rapid detection of soybean flower pods in the field. This study can provide reliable technical support for detecting soybean flowers and pod numbers in the field and selecting high-yielding varieties.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Soybean Pod Accuracy Detection and Counting Model Based on Improved YOLOv8
    Jia, Xiaofei
    Hua, Zhenlu
    Shi, Hongtao
    Zhu, Dan
    Han, Zhongzhi
    Wu, Guangxia
    Deng, Limiao
    AGRICULTURE-BASEL, 2025, 15 (06):
  • [2] Detection method of soybean pod number per plant using improved YOLOv4 algorithm
    Guo R.
    Yu C.
    He H.
    Zhao Y.
    Yu H.
    Feng X.
    He, Hong (hehong@sdu.edu.cn), 1600, Chinese Society of Agricultural Engineering (37): : 179 - 187
  • [3] POD PEPPER TARGET DETECTION BASED ON IMPROVED YOLOv8
    Shen, Jiayv
    Kong, Qingzhong
    Liu, Yanghao
    Ma, Na
    INMATEH - Agricultural Engineering, 2024, 74 (03): : 273 - 282
  • [4] Blueberry flower detection algorithm based on improved YOLOv8
    Gai, Rongli
    Zhang, Huatian
    Guo, Zhibin
    Kong, Xiangzhou
    Qin, Shan
    2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023, 2023, : 768 - 773
  • [5] ADL-YOLOv8: A Field Crop Weed Detection Model Based on Improved YOLOv8
    Jia, Zhiyu
    Zhang, Ming
    Yuan, Chang
    Liu, Qinghua
    Liu, Hongrui
    Qiu, Xiulin
    Zhao, Weiguo
    Shi, Jinlong
    AGRONOMY-BASEL, 2024, 14 (10):
  • [6] An underwater crack detection method based on improved YOLOv8
    Li, Xiaofei
    Xu, Langxing
    Wei, Mengpu
    Zhang, Lixiao
    Zhang, Chen
    OCEAN ENGINEERING, 2024, 313
  • [7] A Universal Tire Detection Method Based on Improved YOLOv8
    Guo, Chi
    Chen, Mingxia
    Wu, Junjie
    Hu, Haipeng
    Huang, Luobing
    Li, Junjie
    IEEE ACCESS, 2024, 12 : 174770 - 174781
  • [8] Method for the lightweight detection of wheat disease using improved YOLOv8
    Ma C.
    Zhang H.
    Ma X.
    Wang J.
    Zhang Y.
    Zhang X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (05): : 187 - 195
  • [9] An Insulator Location and Defect Detection Method Based on Improved YOLOv8
    Li, Zhongsheng
    Jiang, Chenda
    Li, Zhongliang
    IEEE ACCESS, 2024, 12 : 106781 - 106792
  • [10] Lightweight Insulator and Defect Detection Method Based on Improved YOLOv8
    Liu, Yanxing
    Li, Xudong
    Qiao, Ruyu
    Chen, Yu
    Han, Xueliang
    Paul, Agyemang
    Wu, Zhefu
    APPLIED SCIENCES-BASEL, 2024, 14 (19):