Copper metallization of carbon fiber-reinforced epoxy polymer composites by surface activation and electrodeposition

被引:0
|
作者
Basheer, Bashida [1 ]
Akhil, M. G. [1 ,2 ]
Rajan, T. P. D. [1 ,2 ]
Agarwal, Pankaj [3 ]
Saikrishna, V. Vijay [3 ]
机构
[1] CSIR Natl Inst Interdisciplinary Sci & Technol, Mat Sci & Technol Div, Thiruvananthapuram 695019, Kerala, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[3] Indian Space Res Org ISRO, Vikram Sarabhai Space Ctr VSSC, Thiruvananthapuram 695013, India
来源
关键词
Epoxy-carbon fiber composite; Electrodeposition; Surface activation; Sn/Ag activation; Electrical conductivity; Adhesion; COLD-SPRAY; DEPOSITION; COATINGS; CORROSION; ADHESION; MECHANISMS; STRENGTH; HARDNESS; GLASS;
D O I
10.1016/j.surfcoat.2024.131016
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The application of polymer metallization in lightweight and high-strength materials for the sporting goods, automotive, aerospace and construction sectors has attracted considerable attention. The present study aims to deposit a thin, uniform copper (Cu) layer on an epoxy-carbon fiber (epoxy-Cf) composite material for lightweight, high-frequency radio reflector applications (Ka-Band and higher frequencies) required in space missions. In this work, a surface-activated electroplating technique in which the surface of the substrate is activated with a Sn/Ag system, followed by conventional electroplating is studied. Surface activation deposits layers of conducting metal ions on the surface of the epoxy-Cf composite, which significantly improves the electrical conductivity of the composite surface. The subsequent electrodeposition takes place from a CuSO4 solution with a pH value of 4 at three different current density values of 0.05 A/dm2, 0.5 A/dm2 and 1 A/dm2. The presence and abundance of metallic Cu over epoxy-Cf composite were confirmed by X-ray diffraction and X-ray photoelectron spectroscopy. The morphology and elemental composition of the coating were characterized by scanning electron microscopy equipped with energy dispersive spectroscopy. With current density and coating thickness, morphology of the deposit changed from cauliflower-like to spherical along with grain refinement. Microhardness test shows a hardness of 330 HV and the pull-off adhesion test gave a bond strength of 1.69 MPa for 27.56 mu m thick copper deposit. A major challenge encountered during the deposition of Cu is the oxidation of the metal followed by immediate tarnishing. This issue has been effectively addressed by employing benzotriazole solution as a protective agent.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Nonlinear anisotropic electrical response of carbon fiber-reinforced polymer composites
    Haider, Mohammad F.
    Majumdar, Prasun K.
    Angeloni, Stephanie
    Reifsnider, Kenneth L.
    JOURNAL OF COMPOSITE MATERIALS, 2018, 52 (08) : 1017 - 1032
  • [42] Effect of Hyperbranched Epoxy Resin on Mechanical Properties of Short Carbon Fiber-Reinforced Epoxy Composites
    Zhang, Zhongwei
    Tan, Yefa
    Feng, Ke
    Wang, Xiaolong
    Tan, Hua
    POLYMER COMPOSITES, 2016, 37 (09) : 2727 - 2733
  • [43] Milling Behavior Analysis of Carbon Fiber-Reinforced Polymer (CFRP) Composites
    Ozkan, Dervis
    Gok, Mustafa Sabri
    Oge, Mecit
    Karaoglanli, Abdullah Cahit
    MATERIALS TODAY-PROCEEDINGS, 2019, 11 : 526 - 533
  • [44] Constitutive modelling of carbon fiber-reinforced shape memory polymer composites
    Hong, Seok Bin
    Kim, Jingyun
    Gu, Nam Seo
    Yu, Woong-Ryeol
    NUMISHEET 2018: 11TH INTERNATIONAL CONFERENCE AND WORKSHOP ON NUMERICAL SIMULATION OF 3D SHEET METAL FORMING PROCESSES, 2018, 1063
  • [45] Fatigue damage behaviors of carbon fiber-reinforced epoxy composites containing nanoclay
    Khan, Shafi Ullah
    Munir, Arshad
    Hussain, Rizwan
    Kim, Jang-Kyo
    COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (14) : 2077 - 2085
  • [46] FLEXED PLATE IMPACT TESTING OF CARBON FIBER-REINFORCED POLYMER COMPOSITES
    DAVIES, CKL
    TURNER, S
    WILLIAMSON, KH
    COMPOSITES, 1985, 16 (04): : 279 - 285
  • [47] Interfacial Interlocking of Carbon Fiber-Reinforced Polymer Composites: A Short Review
    Joo, Jong-Hyun
    Kim, Seong-Hwang
    Yim, Yoon-Ji
    Bae, Jin-Seok
    Seo, Min-Kang
    POLYMERS, 2025, 17 (03)
  • [48] Stress Distribution in Carbon Fiber-Reinforced Epoxy Composites Under the Supercritical Condition
    Cheng, Huanbo
    Liu, Zhifeng
    Huang, Haihong
    Sun, Xiao
    Li, Zhenwen
    POLYMER COMPOSITES, 2015, 36 (05) : 961 - 968
  • [49] Effects of acrylamide on mechanical and tribological properties of carbon fiber-reinforced epoxy composites
    Chong, Chuanguang
    Shang, Wulin
    Che, Yuanyuan
    Huang, Jin
    Zhou, Shaofeng
    Zhang, Qiaoxin
    JOURNAL OF COMPOSITE MATERIALS, 2015, 49 (12) : 1461 - 1469
  • [50] Cryogenic Impact on Carbon Fiber-Reinforced Epoxy Composites for Hydrogen Storage Vessels
    Dagdag, Omar
    Kim, Hansang
    JOURNAL OF COMPOSITES SCIENCE, 2024, 8 (11):