Copper metallization of carbon fiber-reinforced epoxy polymer composites by surface activation and electrodeposition

被引:0
|
作者
Basheer, Bashida [1 ]
Akhil, M. G. [1 ,2 ]
Rajan, T. P. D. [1 ,2 ]
Agarwal, Pankaj [3 ]
Saikrishna, V. Vijay [3 ]
机构
[1] CSIR Natl Inst Interdisciplinary Sci & Technol, Mat Sci & Technol Div, Thiruvananthapuram 695019, Kerala, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[3] Indian Space Res Org ISRO, Vikram Sarabhai Space Ctr VSSC, Thiruvananthapuram 695013, India
来源
关键词
Epoxy-carbon fiber composite; Electrodeposition; Surface activation; Sn/Ag activation; Electrical conductivity; Adhesion; COLD-SPRAY; DEPOSITION; COATINGS; CORROSION; ADHESION; MECHANISMS; STRENGTH; HARDNESS; GLASS;
D O I
10.1016/j.surfcoat.2024.131016
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The application of polymer metallization in lightweight and high-strength materials for the sporting goods, automotive, aerospace and construction sectors has attracted considerable attention. The present study aims to deposit a thin, uniform copper (Cu) layer on an epoxy-carbon fiber (epoxy-Cf) composite material for lightweight, high-frequency radio reflector applications (Ka-Band and higher frequencies) required in space missions. In this work, a surface-activated electroplating technique in which the surface of the substrate is activated with a Sn/Ag system, followed by conventional electroplating is studied. Surface activation deposits layers of conducting metal ions on the surface of the epoxy-Cf composite, which significantly improves the electrical conductivity of the composite surface. The subsequent electrodeposition takes place from a CuSO4 solution with a pH value of 4 at three different current density values of 0.05 A/dm2, 0.5 A/dm2 and 1 A/dm2. The presence and abundance of metallic Cu over epoxy-Cf composite were confirmed by X-ray diffraction and X-ray photoelectron spectroscopy. The morphology and elemental composition of the coating were characterized by scanning electron microscopy equipped with energy dispersive spectroscopy. With current density and coating thickness, morphology of the deposit changed from cauliflower-like to spherical along with grain refinement. Microhardness test shows a hardness of 330 HV and the pull-off adhesion test gave a bond strength of 1.69 MPa for 27.56 mu m thick copper deposit. A major challenge encountered during the deposition of Cu is the oxidation of the metal followed by immediate tarnishing. This issue has been effectively addressed by employing benzotriazole solution as a protective agent.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Surface physics and chemistry of carbon fibers enhance dissimilar sheet joining of carbon fiber-reinforced plastic by copper electrodeposition
    Hakamada, Masataka
    Naito, Koji
    Mabuchi, Mamoru
    MATERIALIA, 2024, 37
  • [32] SURFACE PRETREATMENT OF CARBON FIBER-REINFORCED COMPOSITES FOR ADHESIVE BONDING
    PARKER, BM
    WAGHORNE, RM
    COMPOSITES, 1982, 13 (03): : 280 - 288
  • [33] The influence of surface treatment on the tensile properties of carbon fiber-reinforced epoxy composites-bonded joints
    Yang, Guanxia
    Yang, Tao
    Yuan, Wenhui
    Du, Yu
    COMPOSITES PART B-ENGINEERING, 2019, 160 : 446 - 456
  • [34] Properties Of Glass/Carbon Fiber Reinforced Epoxy Hybrid Polymer Composites
    Patel, R. H.
    Sevkani, V. R.
    Patel, B. R.
    Patel, V. B.
    INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015), 2016, 1728
  • [35] Environmental Degradation Behaviors of Glass/Carbon Fiber-Reinforced Polymer Composites
    Bae, Sung-Youl
    Kim, Yun-Hae
    Kim, Kook-Jin
    Han, Joong-Won
    Moon, Kyung-Man
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2008, 5 (08) : 1758 - 1762
  • [36] MECHANICAL-PROPERTIES OF CARBON FIBER-REINFORCED COPPER MATRIX COMPOSITES
    OCHIAI, S
    MIZUHARA, M
    MURAKAMI, Y
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1977, 41 (06) : 625 - 631
  • [37] Study of the flame retardant properties of short carbon fiber-reinforced epoxy composites
    Chai, Guo-qiang
    Wang, Zhi
    Zhang, Xu
    HIGH PERFORMANCE POLYMERS, 2018, 30 (09) : 1027 - 1035
  • [38] Effects of the Longitudinal Surface Roughness on Fiber Pull-Out Behavior in Carbon Fiber-Reinforced Epoxy Resin Composites
    Yao, Yin
    Chen, Shaohua
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2013, 80 (02):
  • [39] Recent advances of interphases in carbon fiber-reinforced polymer composites: A review
    Zheng, Hao
    Zhang, Wenjian
    Li, Bowen
    Zhu, Junjie
    Wang, Chaohang
    Song, Guojun
    Wu, Guangshun
    Yang, Xiaoping
    Huang, Yudong
    Ma, Lichun
    COMPOSITES PART B-ENGINEERING, 2022, 233
  • [40] Electric heating repair of short carbon fiber-reinforced polymer composites
    Yao, Riwu
    Zong, Xinwei
    Wang, Deyi
    Zheng, Xinyu
    Shang, Ningtao
    Shi, Jianfeng
    POLYMER COMPOSITES, 2025,