Beyond conventional: unveiling the impact of Zn anode pretreatment in aqueous zinc-ion batteries

被引:2
|
作者
Gull, Sanna [1 ]
Lai, Chi-Yu [2 ]
Lu, Wen-Hsuan [1 ]
Rehman, Bushra [1 ]
Chiu, Wan-Ju [1 ]
Chen, Han-Yi [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, 101,Sec 2,Kuang Fu Rd, Hsinchu 300044, Taiwan
[2] Natl Tsing Hua Univ, Dept Chem Engn, 101,Sec 2,Kuang Fu Rd, Hsinchu 300044, Taiwan
关键词
Vanadium dioxide;
D O I
10.1039/d4ta03160a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the simplicity and widespread use of conventional (untreated) Zn foil as a benchmark, conventional Zn foil continues to be the most common anode material in the research of zinc-ion batteries (ZIBs). However, there has been little focus on the inherent structure of the zinc foil itself. The traditional Zn anode has uneven rough surfaces that can lead to nonuniform charge distribution and hinder nucleation, thereby triggering the "tip effect" that can induce the formation of adverse dendrites. In this study, the conventional Zn foil was examined using simple pretreatments such as mechanical polishing and chemical etching that have the potential to substantially improve the electrochemical properties. Compared with bare Zn (b-Zn) and polished Zn (p-Zn), chemically etched Zn (e-Zn) sustained a remarkable life cycle of up to 5000 cycles with similar to 71% cycling retention at a high current density of 5 A g-1 using V2O5<middle dot>nH2O as a cathode material. Besides, the e-Zn & Vert;e-Zn symmetric cell exhibited excellent cycling stability over 300 cycles at a high current density of 10 mA cm-2 with better inhibiting hydrogen production during Zn stripping/plating. Moreover, advanced characterizations such as in situ transmission X-ray microscopy (TXM) and ex situ atomic force microscopy (AFM) have been employed to gain insight into the early stages of Zn dendrite formation on Zn foils in mild acidic aqueous electrolytes during the plating/stripping processes. This superior performance of the e-Zn is attributed to its unique 3D structure that effectively accommodates Zn dendrites, as confirmed by XRD and EBSD analyses, which reveal Zn deposition along the (002) plane with lower surface energy as compared with other planes. This approach provides a straightforward and industrially scalable method for expanding ZIB utilization. Chemically etched Zn shows superior cycling stability in Zn-ion batteries, achieving 5000 cycles with 71% retention. In situ TXM, AFM, and EBSD reveal a unique 3D structure and Zn deposition along the (002) plane, reducing dendrite formation.
引用
收藏
页码:28919 / 28929
页数:11
相关论文
共 50 条
  • [41] A dendrite-free anode for stable aqueous rechargeable zinc-ion batteries
    Kumar, Santosh
    Yoon, Hocheol
    Park, Hyeonghun
    Park, Geumyong
    Suh, Seokho
    Kim, Hyeong-Jin
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 108 : 321 - 327
  • [42] Anode Current Collector for Aqueous Zinc-ion Batteries: Issues and Design Strategies
    Ji Huimin
    Xie Chunlin
    Zhang Qi
    Li Yixin
    Li Huanhuan
    Wang Haiyan
    ACTA CHIMICA SINICA, 2023, 81 (01) : 29 - 41
  • [43] Comparative Review on the Aqueous Zinc-Ion Batteries (AZIBs) and Flexible Zinc-Ion Batteries (FZIBs)
    Al-Amin, Md
    Islam, Saiful
    Shibly, Sayed Ul Alam
    Iffat, Samia
    NANOMATERIALS, 2022, 12 (22)
  • [44] Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc-Ion Batteries
    Wu, Tingqing
    Hu, Chao
    Zhang, Qi
    Yang, Zefang
    Jin, Guanhua
    Li, Yixin
    Tang, Yougen
    Li, Huanhuan
    Wang, Haiyan
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (30)
  • [45] Sodium Citrate Electrolyte Additive to Improve Zinc Anode Behavior in Aqueous Zinc-Ion Batteries
    Liu, Xin
    Yue, Liang
    Dong, Weixu
    Qu, Yifan
    Sun, Xianzhong
    Chen, Lifeng
    BATTERIES-BASEL, 2024, 10 (03):
  • [46] Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries
    Liu, Chaofeng
    Tian, Meng
    Wang, Mingshan
    Zheng, Jiqi
    Wang, Shuhua
    Yan, Mengyu
    Wang, Zhaojie
    Yin, Zhengmao
    Yang, Jihui
    Cao, Guozhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) : 7713 - 7723
  • [47] Advanced aqueous zinc-ion batteries based on an anode constructed from zinc powder: a review
    Li, Le
    Jia, Shaofeng
    Shi, Yue
    Wang, Conghui
    Qiu, Hengwei
    Ji, Yongqiang
    Cao, Minghui
    Zhang, Dan
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (15): : 4485 - 4498
  • [48] Zinc-Ion Storage Mechanism of Polyaniline for Rechargeable Aqueous Zinc-Ion Batteries
    Gong, Jiangfeng
    Li, Hao
    Zhang, Kaixiao
    Zhang, Zhupeng
    Cao, Jie
    Shao, Zhibin
    Tang, Chunmei
    Fu, Shaojie
    Wang, Qianjin
    Wu, Xiang
    NANOMATERIALS, 2022, 12 (09)
  • [49] Revitalizing zinc-ion batteries with advanced zinc anode design
    Chen, Shuwei
    Wang, Huibo
    Zhu, Mengyu
    You, Fan
    Lin, Wang
    Chan, Dan
    Lin, Wanxin
    Li, Peng
    Tang, Yuxin
    Zhang, Yanyan
    NANOSCALE HORIZONS, 2022, 8 (01) : 29 - 54
  • [50] Tuning the distribution of zinc ions by manganese dioxide ion sieve to realize the uniform deposition of zinc ions on Zn metal anode of aqueous zinc-ion batteries
    Liu, Yu
    Li, Qingping
    Zhang, Xiaoqin
    Dong, Yingxia
    Cao, Heng
    Huang, Xiaomin
    Li, Yuanxia
    Zheng, Qiaoji
    Zhao, Jingxin
    Lin, Dunmin
    CERAMICS INTERNATIONAL, 2023, 49 (16) : 27506 - 27513