Beyond conventional: unveiling the impact of Zn anode pretreatment in aqueous zinc-ion batteries

被引:2
|
作者
Gull, Sanna [1 ]
Lai, Chi-Yu [2 ]
Lu, Wen-Hsuan [1 ]
Rehman, Bushra [1 ]
Chiu, Wan-Ju [1 ]
Chen, Han-Yi [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, 101,Sec 2,Kuang Fu Rd, Hsinchu 300044, Taiwan
[2] Natl Tsing Hua Univ, Dept Chem Engn, 101,Sec 2,Kuang Fu Rd, Hsinchu 300044, Taiwan
关键词
Vanadium dioxide;
D O I
10.1039/d4ta03160a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the simplicity and widespread use of conventional (untreated) Zn foil as a benchmark, conventional Zn foil continues to be the most common anode material in the research of zinc-ion batteries (ZIBs). However, there has been little focus on the inherent structure of the zinc foil itself. The traditional Zn anode has uneven rough surfaces that can lead to nonuniform charge distribution and hinder nucleation, thereby triggering the "tip effect" that can induce the formation of adverse dendrites. In this study, the conventional Zn foil was examined using simple pretreatments such as mechanical polishing and chemical etching that have the potential to substantially improve the electrochemical properties. Compared with bare Zn (b-Zn) and polished Zn (p-Zn), chemically etched Zn (e-Zn) sustained a remarkable life cycle of up to 5000 cycles with similar to 71% cycling retention at a high current density of 5 A g-1 using V2O5<middle dot>nH2O as a cathode material. Besides, the e-Zn & Vert;e-Zn symmetric cell exhibited excellent cycling stability over 300 cycles at a high current density of 10 mA cm-2 with better inhibiting hydrogen production during Zn stripping/plating. Moreover, advanced characterizations such as in situ transmission X-ray microscopy (TXM) and ex situ atomic force microscopy (AFM) have been employed to gain insight into the early stages of Zn dendrite formation on Zn foils in mild acidic aqueous electrolytes during the plating/stripping processes. This superior performance of the e-Zn is attributed to its unique 3D structure that effectively accommodates Zn dendrites, as confirmed by XRD and EBSD analyses, which reveal Zn deposition along the (002) plane with lower surface energy as compared with other planes. This approach provides a straightforward and industrially scalable method for expanding ZIB utilization. Chemically etched Zn shows superior cycling stability in Zn-ion batteries, achieving 5000 cycles with 71% retention. In situ TXM, AFM, and EBSD reveal a unique 3D structure and Zn deposition along the (002) plane, reducing dendrite formation.
引用
收藏
页码:28919 / 28929
页数:11
相关论文
共 50 条
  • [21] High ionic conductive protection layer on Zn metal anode for enhanced aqueous zinc-ion batteries
    Xianyu Liu
    Qiongqiong Lu
    Aikai Yang
    Yitai Qian
    Chinese Chemical Letters, 2023, 34 (06) : 593 - 596
  • [22] High ionic conductive protection layer on Zn metal anode for enhanced aqueous zinc-ion batteries
    Liu, Xianyu
    Lu, Qiongqiong
    Yang, Aikai
    Qian, Yitai
    CHINESE CHEMICAL LETTERS, 2023, 34 (06)
  • [23] Lithiation Induced Hetero-Superlattice Zn/ZnLi as Stable Anode for Aqueous Zinc-Ion Batteries
    Hu, Chao
    Yang, Zefang
    Zhang, Qi
    Zhang, Mingze
    Wu, Tingqing
    Xie, Chunlin
    Wang, Hao
    Tang, Yougen
    Wang, Haiyan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (41)
  • [24] Challenges, Strategies, and Perspectives of Anode Protection in Aqueous Zinc-Ion Batteries
    Cui, Yunwei
    Ju, Zhengyu
    Yu, Runfeng
    Du, Huiping
    Zhang, Bowen
    Wang, Yaqun
    Yu, Guihua
    ACS MATERIALS LETTERS, 2024, 6 (02): : 611 - 626
  • [25] Critical roles of metal-organic frameworks in improving the Zn anode in aqueous zinc-ion batteries
    Gopalakrishnan, Mohan
    Ganesan, Sunantha
    Nguyen, Mai Thanh
    Yonezawa, Tetsu
    Praserthdam, Supareak
    Pornprasertsuk, Rojana
    Kheawhom, Soorathep
    CHEMICAL ENGINEERING JOURNAL, 2023, 457
  • [26] Accelerating Zn 2+ kinetics and regulating zinc anode interface for high stable aqueous zinc-ion batteries
    Cai, Zhiwen
    Wang, Hao
    Wu, Tingqing
    Ji, Huimin
    Tang, Yougen
    Zhang, Qi
    Peng, Zhiguang
    Wang, Haiyan
    MATERIALS TODAY ENERGY, 2024, 43
  • [27] Understanding and Performance of the Zinc Anode Cycling in Aqueous Zinc-Ion Batteries and a Roadmap for the Future
    Shang, Yuan
    Kundu, Dipan
    BATTERIES & SUPERCAPS, 2022, 5 (05)
  • [28] Electroplating of zinc onto polyelectrolyte complex membranes as anode for aqueous zinc-ion batteries
    Arif, Muhammad Bagus
    Dubas, Stephan Thierry
    MATERIALS LETTERS, 2024, 376
  • [29] Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-ion Batteries
    Canpeng Li
    Xuesong Xie
    Shuquan Liang
    Jiang Zhou
    Energy & Environmental Materials , 2020, (02) : 146 - 159
  • [30] Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc-ion Batteries
    Li, Canpeng
    Xie, Xuesong
    Liang, Shuquan
    Zhou, Jiang
    ENERGY & ENVIRONMENTAL MATERIALS, 2020, 3 (02) : 146 - 159