Beyond conventional: unveiling the impact of Zn anode pretreatment in aqueous zinc-ion batteries

被引:2
|
作者
Gull, Sanna [1 ]
Lai, Chi-Yu [2 ]
Lu, Wen-Hsuan [1 ]
Rehman, Bushra [1 ]
Chiu, Wan-Ju [1 ]
Chen, Han-Yi [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, 101,Sec 2,Kuang Fu Rd, Hsinchu 300044, Taiwan
[2] Natl Tsing Hua Univ, Dept Chem Engn, 101,Sec 2,Kuang Fu Rd, Hsinchu 300044, Taiwan
关键词
Vanadium dioxide;
D O I
10.1039/d4ta03160a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the simplicity and widespread use of conventional (untreated) Zn foil as a benchmark, conventional Zn foil continues to be the most common anode material in the research of zinc-ion batteries (ZIBs). However, there has been little focus on the inherent structure of the zinc foil itself. The traditional Zn anode has uneven rough surfaces that can lead to nonuniform charge distribution and hinder nucleation, thereby triggering the "tip effect" that can induce the formation of adverse dendrites. In this study, the conventional Zn foil was examined using simple pretreatments such as mechanical polishing and chemical etching that have the potential to substantially improve the electrochemical properties. Compared with bare Zn (b-Zn) and polished Zn (p-Zn), chemically etched Zn (e-Zn) sustained a remarkable life cycle of up to 5000 cycles with similar to 71% cycling retention at a high current density of 5 A g-1 using V2O5<middle dot>nH2O as a cathode material. Besides, the e-Zn & Vert;e-Zn symmetric cell exhibited excellent cycling stability over 300 cycles at a high current density of 10 mA cm-2 with better inhibiting hydrogen production during Zn stripping/plating. Moreover, advanced characterizations such as in situ transmission X-ray microscopy (TXM) and ex situ atomic force microscopy (AFM) have been employed to gain insight into the early stages of Zn dendrite formation on Zn foils in mild acidic aqueous electrolytes during the plating/stripping processes. This superior performance of the e-Zn is attributed to its unique 3D structure that effectively accommodates Zn dendrites, as confirmed by XRD and EBSD analyses, which reveal Zn deposition along the (002) plane with lower surface energy as compared with other planes. This approach provides a straightforward and industrially scalable method for expanding ZIB utilization. Chemically etched Zn shows superior cycling stability in Zn-ion batteries, achieving 5000 cycles with 71% retention. In situ TXM, AFM, and EBSD reveal a unique 3D structure and Zn deposition along the (002) plane, reducing dendrite formation.
引用
收藏
页码:28919 / 28929
页数:11
相关论文
共 50 条
  • [1] Anode surface pretreatment to optimize electrochemical performance of aqueous zinc-ion batteries
    Sui, Bin-bin
    Sha, Lin
    Wang, Peng-fei
    Gong, Zhe
    Zhou, Ming-dong
    Shi, Fa-nian
    Zhu, Kai
    SOLID STATE IONICS, 2024, 405
  • [2] Zinc-ion conductive buffer polymer layer eliminating parasitic reactions of Zn anode in aqueous zinc-ion batteries
    Chen, Danling
    Wang, Huibo
    Ren, Li
    Zhu, Mengyu
    Bai, Zhengshuai
    Li, Chunxin
    Shi, Cansheng
    Wang, Huicai
    Tang, Yuxin
    Zhang, Yanyan
    SCIENCE CHINA-MATERIALS, 2023, 66 (12) : 4587 - 4594
  • [3] Zinc Anode Protection Strategy for Aqueous Zinc-Ion Batteries
    Han Dong
    Ma Tao
    Sun Tian-Jiang
    Zhang Wei-Jia
    Tao Zhan-Liang
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (02) : 185 - 197
  • [4] Challenges and strategies of zinc anode for aqueous zinc-ion batteries
    He, Weixin
    Zuo, Shiyong
    Xu, Xijun
    Zeng, Liyan
    Liu, Li
    Zhao, Weiming
    Liu, Jun
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (05) : 2201 - 2217
  • [5] In situ zinc citrate on the surface of Zn anode improves the performance of aqueous zinc-ion batteries
    Sui, Bin-bin
    Sha, Lin
    Wang, Peng-fei
    Gong, Zhe
    Zhang, Yu-hang
    Wu, Yu-han
    Zhao, Li-na
    Tang, Jun-jie
    Shi, Fa-nian
    JOURNAL OF ENERGY STORAGE, 2024, 82
  • [6] Anode optimization strategies for aqueous zinc-ion batteries
    Zhang, Yiyang
    Zheng, Xiaobo
    Wang, Nana
    Lai, Wei-Hong
    Liu, Yong
    Chou, Shu-Lei
    Liu, Hua-Kun
    Dou, Shi-Xue
    Wang, Yun-Xiao
    CHEMICAL SCIENCE, 2022, 13 (48) : 14246 - 14263
  • [7] Functionalization design of zinc anode for advanced aqueous zinc-ion batteries
    Feng, Ziyi
    Feng, Yang
    Fan, Fangfang
    Deng, Dezhao
    Dong, Han
    Liu, Shude
    Kang, Ling
    Jun, Seong Chan
    Wang, Ling
    Zhu, Jing
    Dai, Lei
    He, Zhangxing
    SUSMAT, 2024, 4 (02):
  • [8] Research Progress on Anode Materials for Aqueous Zinc-ion Batteries
    Lan B.
    Zhang W.
    Luo P.
    Tang C.
    Tang W.
    Zuo C.
    Dong S.
    Chen L.
    Cailiao Daobao/Materials Reports, 2020, 34 (13): : 13068 - 13075
  • [9] Progress and Prospect of Zn Anode Modification in Aqueous Zinc-Ion Batteries: Experimental and Theoretical Aspects
    Feng, Kaiyong
    Wang, Dongxu
    Yu, Yingjian
    MOLECULES, 2023, 28 (06):
  • [10] A versatile electrolyte additive enabling highly reversible Zn anode in aqueous zinc-ion batteries
    Zhou, Yikun
    Ma, Junhong
    Yuan, Yang
    Ma, Chaoyun
    Jia, Shaorui
    Zhang, Xinbo
    Zhang, Guirong
    Zhou, Xuye
    JOURNAL OF ENERGY STORAGE, 2024, 102