Signatures of conformal symmetry in the dynamics of quantum gases: A cyclic quantum state and entanglement entropy

被引:0
|
作者
Maki, Jeff [1 ,2 ]
Zhou, Fei [3 ]
机构
[1] Univ Trento, Pitaevskii BEC Ctr, CNR INO, I-38123 Trento, Italy
[2] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy
[3] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
INVARIANCE; SCALE;
D O I
10.1103/PhysRevA.110.023312
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Conformal symmetry heavily constrains the dynamics of nonrelativistic quantum gases tuned to a nearby quantum critical point. One important consequence of this symmetry is that entropy production can be absent in far-away-from-equilibrium dynamics of strongly interacting three-dimensional (3D) and one-dimensional (1D) quantum gases placed inside an adjustable harmonic trapping potential. This can lead to an oscillatory fully revivable many-body dynamic state, which is reflected in many physical observables. In this article we further investigate the consequences of conformal symmetry on (a) the zero-temperature autocorrelation function, (b) the Wigner distribution function, and (c) the von Neumann entanglement entropy. A direct calculation of these quantities for generic strongly interacting systems is usually extremely difficult. However, we have derived the general structures of these functions in the nonequilibrium dynamics when their dynamics are constrained by conformal symmetry. We obtain our results for (a) by utilizing an operator-state correspondence which connects the imaginary time evolution of primary operators to different initial states of harmonically trapped gases, while the dynamics of the functions in (b) and (c) are derived from conformal invariant density matrices.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Quantum simulation of entanglement dynamics in a quantum processor
    Saavedra-Pino, Sebastian
    Inzulza, Cristian
    Roman, Pablo
    Albarran-Arriagada, Francisco
    Retamal, Juan Carlos
    PHYSICA SCRIPTA, 2024, 99 (09)
  • [42] Quantum corrections to holographic entanglement entropy
    Faulkner, Thomas
    Lewkowycz, Aitor
    Maldacena, Juan
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11):
  • [43] Tripartite entanglement and quantum relative entropy
    Galvao, EF
    Plenio, MB
    Virmani, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48): : 8809 - 8818
  • [44] Entanglement entropy in scalar quantum electrodynamics
    Fedida, Samuel
    Mazumdar, Anupam
    Bose, Sougato
    Serafini, Alessio
    PHYSICAL REVIEW D, 2024, 109 (06)
  • [45] Entanglement, quantum entropy and mutual information
    Belavkin, VP
    Ohya, M
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2017): : 209 - 231
  • [46] Quantum correlation with entanglement and mutual entropy
    Takashi Matsuoka
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2011, 3 (3) : 169 - 180
  • [48] Discussion of Entanglement Entropy in Quantum Gravity
    Ma, Chen-Te
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2018, 66 (02):
  • [49] Entanglement entropy and the simulation of Quantum Mechanics
    Latorre, Jose I.
    QUANTUM INFORMATION AND MANY BODY QUANTUM SYSTEMS, PROCEEDINGS, 2008, 8 : 117 - 127
  • [50] Entanglement entropy in extended quantum systems
    Cardy, J. L.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 64 (3-4): : 321 - 326