Signatures of conformal symmetry in the dynamics of quantum gases: A cyclic quantum state and entanglement entropy

被引:0
|
作者
Maki, Jeff [1 ,2 ]
Zhou, Fei [3 ]
机构
[1] Univ Trento, Pitaevskii BEC Ctr, CNR INO, I-38123 Trento, Italy
[2] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy
[3] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
INVARIANCE; SCALE;
D O I
10.1103/PhysRevA.110.023312
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Conformal symmetry heavily constrains the dynamics of nonrelativistic quantum gases tuned to a nearby quantum critical point. One important consequence of this symmetry is that entropy production can be absent in far-away-from-equilibrium dynamics of strongly interacting three-dimensional (3D) and one-dimensional (1D) quantum gases placed inside an adjustable harmonic trapping potential. This can lead to an oscillatory fully revivable many-body dynamic state, which is reflected in many physical observables. In this article we further investigate the consequences of conformal symmetry on (a) the zero-temperature autocorrelation function, (b) the Wigner distribution function, and (c) the von Neumann entanglement entropy. A direct calculation of these quantities for generic strongly interacting systems is usually extremely difficult. However, we have derived the general structures of these functions in the nonequilibrium dynamics when their dynamics are constrained by conformal symmetry. We obtain our results for (a) by utilizing an operator-state correspondence which connects the imaginary time evolution of primary operators to different initial states of harmonically trapped gases, while the dynamics of the functions in (b) and (c) are derived from conformal invariant density matrices.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Conformal symmetry and quantum relativity
    Jaekel, MT
    Reynaud, S
    FOUNDATIONS OF PHYSICS, 1998, 28 (03) : 439 - 456
  • [22] Conformal symmetry in quantum gravity
    Oda, Ichiro
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (09):
  • [23] Universal entanglement entropy in two-dimensional conformal quantum critical points
    Hsu, Benjamin
    Mulligan, Michael
    Fradkin, Eduardo
    Kim, Eun-Ah
    PHYSICAL REVIEW B, 2009, 79 (11)
  • [24] Coding by Quantum Entanglement Entropy
    Skopec, Robert
    NEUROQUANTOLOGY, 2017, 15 (02) : 200 - 207
  • [25] Quantum entanglement and Kaniadakis entropy
    Ourabah, Kamel
    Hamici-Bendimerad, Amel Hiba
    Tribeche, Mouloud
    PHYSICA SCRIPTA, 2015, 90 (04)
  • [26] Quantum degeneracy and spin entanglement in ideal quantum gases
    Zouari Ahmed, Fatma
    Meftah, Mohammed Tayeb
    Roscilde, Tommaso
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2024, 57 (04)
  • [27] Dynamics of quantum entanglement in quantum channels
    Shi-Dong Liang
    Quantum Information Processing, 2017, 16
  • [28] Dynamics of quantum entanglement in quantum channels
    Liang, Shi-Dong
    QUANTUM INFORMATION PROCESSING, 2017, 16 (08)
  • [29] Dynamics of quantum entanglement
    Zyczkowski, K
    Horodecki, P
    Horodecki, M
    Horodecki, R
    PHYSICAL REVIEW A, 2002, 65 (01): : 121011 - 121019
  • [30] Quantum chaos: Entropy signatures
    Miller, PA
    Sarkar, S
    Zarum, R
    ACTA PHYSICA POLONICA B, 1998, 29 (12): : 3643 - 3688