Calibrating machine learning approaches for probability estimation: A short expansion

被引:0
|
作者
Ojeda, Francisco M. [1 ,2 ]
Baker, Stuart G. [3 ]
Ziegler, Andreas [1 ,2 ,4 ,5 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Univ Heart & Vasc Ctr Hamburg, Dept Cardiol, Hamburg, Germany
[2] Univ Med Ctr Hamburg Eppendorf, Univ Heart & Vasc Ctr Hamburg, Ctr Populat Hlth Innovat POINT, Hamburg, Germany
[3] NCI, Div Canc Prevent, Biometry Res Grp, Bethesda, MD USA
[4] Cardiocare, Medizincampus Davos, Herman Burchard Str 1, CH-7265 Davos, Wolfgang, Switzerland
[5] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Pietermaritzburg, South Africa
关键词
D O I
10.1002/sim.10051
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:4212 / 4215
页数:4
相关论文
共 50 条
  • [41] Cotton Yield Estimation From Aerial Imagery Using Machine Learning Approaches
    Rodriguez-Sanchez, Javier
    Li, Changying
    Paterson, Andrew H.
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [42] Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches
    Tikhamarine, Yazid
    Malik, Anurag
    Kumar, Anil
    Souag-Gamane, Doudja
    Kisi, Ozgur
    HYDROLOGICAL SCIENCES JOURNAL, 2019, 64 (15) : 1824 - 1842
  • [43] Machine Learning Approaches for the Estimation of Biological Aging: The Road Ahead for Population Studies
    Gialluisi, Alessandro
    Di Castelnuovo, Augusto
    Donati, Maria Benedetta
    de Gaetano, Giovanni
    Iacoviello, Licia
    FRONTIERS IN MEDICINE, 2019, 6
  • [44] Combining Multisource Data and Machine Learning Approaches for Multiscale Estimation of Forest Biomass
    Hong, Yifeng
    Xu, Jiaming
    Wu, Chunyan
    Pang, Yong
    Zhang, Shougong
    Chen, Dongsheng
    Yang, Bo
    FORESTS, 2023, 14 (11):
  • [45] Systematic Literature Review on Software Effort Estimation Using Machine Learning Approaches
    Sharma, Pinkashia
    Singh, Jaiteg
    2017 INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING AND INFORMATION SYSTEMS (ICNGCIS), 2017, : 43 - 47
  • [46] FOREST BIOPHYSICAL PARAMETER ESTIMATION VIA MACHINE LEARNING AND NEURAL NETWORK APPROACHES
    Aksoy, Samet
    Al Shwayyat, Shouq Zuhter Hasan
    Topgul, Sule Nur
    Sertel, Elif
    Unsalan, Cem
    Salo, Jari
    Holmstrom, Anton
    Wallerman, Jorgen
    Nilsson, Mats
    Fransson, Johan E. S.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2661 - 2664
  • [47] Dynamic probability estimator for machine learning
    Starzyk, JA
    Wang, F
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (02): : 298 - 308
  • [48] Machine Learning Requires Probability and Statistics
    Braga-Neto, Ulisses M.
    Dougherty, Edward R.
    IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (04) : 118 - 122
  • [49] FLAMINGO: calibrating large cosmological hydrodynamical simulations with machine learning
    Kugel, Roi
    Schaye, Joop
    Schaller, Matthieu
    Helly, John C.
    Braspenning, Joey
    Elbers, Willem
    Frenk, Carlos S.
    Mccarthy, Ian G.
    Kwan, Juliana
    Salcido, Jaime
    van Daalen, Marcel P.
    Vandenbroucke, Bert
    Bahe, Yannick M.
    Borrow, Josh
    Chaikin, Evgenii
    Husko, Filip
    Jenkins, Adrian
    Lacey, Cedric G.
    Nobels, Folkert S. J.
    Vernon, Ian
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 526 (04) : 6103 - 6127
  • [50] Calibrating DFT Formation Enthalpy Calculations by Multifidelity Machine Learning
    Gong, Sheng
    Wang, Shuo
    Xie, Tian
    Chae, Woo Hyun
    Liu, Runze
    Shao-Horn, Yang
    Grossman, Jeffrey C.
    JACS AU, 2022, 2 (09): : 1964 - 1977