Yangians as Pre-Lie and Tridendriform Algebras

被引:0
|
作者
Doikou, Anastasia [1 ,2 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh, Midlothian, Scotland
[2] Maxwell Inst Math Sci, Edinburgh, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-031-62407-0_18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the rigorous discrete derivations of Dyson series and the Magnus expansion, key links between quantum algebras, tridendriform and preLie algebras are established. This is achieved by examining tensor realizations of quantum groups, such as the Yangian. We show that these realizations can be expressed in terms of tridendriform and pre-Lie algebras actions.
引用
收藏
页码:233 / 250
页数:18
相关论文
共 50 条
  • [41] Classification of some simple graded pre-Lie algebras of growth one
    Chapoton, F
    [J]. COMMUNICATIONS IN ALGEBRA, 2004, 32 (01) : 243 - 251
  • [42] Algebraic structures of F-manifolds via pre-Lie algebras
    Dotsenko, Vladimir
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (02) : 517 - 527
  • [43] Algebraic structures of F-manifolds via pre-Lie algebras
    Vladimir Dotsenko
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 517 - 527
  • [44] Totally compatible associative and Lie dialgebras, tridendriform algebras and PostLie algebras
    Yong Zhang
    ChengMing Bai
    Li Guo
    [J]. Science China Mathematics, 2014, 57 : 259 - 273
  • [45] Matching Hom-Setting of Rota-Baxter Algebras, Dendriform Algebras, and Pre-Lie Algebras
    Chen, Dan
    Peng, Xiao-Song
    Zargeh, Chia
    Zhang, Yi
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [46] PRE-LIE LAWS IN INTERACTION
    Manchon, Dominique
    Saidi, Abdellatif
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (10) : 3662 - 3680
  • [47] PRE-LIE DEFORMATION THEORY
    Dotsenko, Vladimir
    Shadrin, Sergey
    Vallette, Bruno
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2016, 16 (03) : 505 - 543
  • [48] Cohomology and Crossed Modules of Modified Rota-Baxter Pre-Lie Algebras
    Zhu, Fuyang
    Teng, Wen
    [J]. MATHEMATICS, 2024, 12 (14)
  • [49] On the Lie enveloping algebra of a pre-Lie algebra
    Oudom, J. -M.
    Guin, D.
    [J]. JOURNAL OF K-THEORY, 2008, 2 (01) : 147 - 167
  • [50] A new formula for Lazard's correspondence for finite braces and pre-Lie algebras
    Smoktunowicz, Agata
    [J]. JOURNAL OF ALGEBRA, 2022, 594 : 202 - 229