A MESHLESS SOLVER FOR BLOOD FLOW SIMULATIONS IN ELASTIC VESSELS USING A PHYSICS-INFORMED NEURAL NETWORK

被引:0
|
作者
Zhang, Han [1 ,2 ]
Chan, Raymond H. [2 ]
Tai, Xue-cheng [3 ]
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[2] Hong Kong Ctr Cerebro Cardiovasc Hlth Engn, Hong Kong, Peoples R China
[3] Norwegian Res Ctr NORCE, Bergen, Norway
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2024年 / 46卷 / 04期
关键词
Key words. fluid-structure interaction; physics-informed neural network; blood flow simulation; arbitrary Lagrangian--Eulerian; computational fluid dynamics; FLUID-STRUCTURE INTERACTION; DEEP LEARNING FRAMEWORK; PRESSURE WIRE; RESERVE; HEMODYNAMICS;
D O I
10.1137/23M1622696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Investigating blood flow in the cardiovascular system is crucial for assessing cardiovascular health. Computational approaches offer some noninvasive alternatives to measure blood flow dynamics. Numerical simulations based on traditional methods such as finite-element and other numerical discretizations have been extensively studied and have yielded excellent results. However, adapting these methods to real-life simulations remains a complex task. In this paper, we propose a method that offers flexibility and can efficiently handle real-life simulations. We suggest utilizing the physics-informed neural network to solve the Navier-Stokes equation in a deformable domain, specifically addressing the simulation of blood flow in elastic vessels. Our approach models blood flow using an incompressible, viscous Navier--Stokes equation in an arbitrary Lagrangian--Eulerian form. The mechanical model for the vessel wall structure is formulated by an equation of Newton's second law of momentum and linear elasticity to the force exerted by the fluid flow. Our method is a mesh-free approach that eliminates the need for discretization and meshing of the computational domain. This makes it highly efficient in solving simulations involving complex geometries. Additionally, with the availability of well-developed open-source machine learning framework packages and parallel modules, our method can easily be accelerated through GPU computing and parallel computing. To evaluate our approach, we conducted experiments on regular cylinder vessels as well as vessels with plaque on their walls. We compared our results to a solution calculated by finite element methods using a dense grid and small time steps, which we considered as the ground truth solution. We report the relative error and the time consumed to solve the problem, highlighting the advantages of our method.
引用
下载
收藏
页码:C479 / C507
页数:29
相关论文
共 50 条
  • [31] Physics-informed deep neural network for image denoising
    Xypakis, Emmanouil
    De Turris, Valeria
    Gala, Fabrizio
    Ruocco, Giancarlo
    Leonetti, Marco
    OPTICS EXPRESS, 2023, 31 (26) : 43838 - 43849
  • [32] Physics-informed neural network for polarimetric underwater imaging
    Hu, Haofeng
    Han, Yilin
    Li, Xiaobo
    Jiang, Liubing
    Che, Li
    Liu, Tiegen
    Zhai, Jingsheng
    OPTICS EXPRESS, 2022, 30 (13) : 22512 - 22522
  • [33] Physics-informed neural network for diffusive wave model
    Hou, Qingzhi
    Li, Yixin
    Singh, Vijay P.
    Sun, Zewei
    JOURNAL OF HYDROLOGY, 2024, 637
  • [34] Physics-informed neural operator solver and super-resolution for solid mechanics
    Kaewnuratchadasorn, Chawit
    Wang, Jiaji
    Kim, Chul-Woo
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, : 3435 - 3451
  • [35] Natural Mode Prediction of a Cantilever Beam Using a Physics-Informed Neural Network
    Kim, Gun Ho
    Lee, Jin Woo
    Transactions of the Korean Society of Mechanical Engineers, A, 2024, 48 (09) : 621 - 631
  • [36] Multi-layer thermal simulation using physics-informed neural network
    Peng, Bohan
    Panesar, Ajit
    Additive Manufacturing, 2024, 95
  • [37] Physics-informed graph convolutional neural network for modeling fluid flow and heat convection
    Peng, Jiang-Zhou
    Hua, Yue
    Li, Yu-Bai
    Chen, Zhi-Hua
    Wu, Wei-Tao
    Aubry, Nadine
    PHYSICS OF FLUIDS, 2023, 35 (08)
  • [38] Data and physics-driven modeling for fluid flow with a physics-informed graph convolutional neural network
    Peng, Jiang -Zhou
    Hua, Yue
    Aubry, Nadine
    Chen, Zhi-Hua
    Mei, Mei
    Wu, Wei-Tao
    OCEAN ENGINEERING, 2024, 301
  • [39] Mean flow reconstruction of unsteady flows using physics-informed neural networks
    Sliwinski, Lukasz
    Rigas, Georgios
    DATA-CENTRIC ENGINEERING, 2023, 4 (01):
  • [40] PREDICTING TRANSITIONAL AND TURBULENT FLOW AROUND A TURBINE BLADE WITH A PHYSICS-INFORMED NEURAL NETWORK
    Hanrahan, Sean K.
    Kozuland, Melissa
    Sandberg, Richard D.
    PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 13C, 2023,