Natural Mode Prediction of a Cantilever Beam Using a Physics-Informed Neural Network

被引:0
|
作者
Kim, Gun Ho [1 ]
Lee, Jin Woo [1 ]
机构
[1] Dept. of Mechanical Engineering, Ajou Univ
关键词
Cantilever - Collocation points - Frequency response functions - Measurement points - Natural modes - Neural network model - Neural-networks - Physic-informed neural network - Vibration;
D O I
10.3795/KSME-A.2024.48.9.621
中图分类号
学科分类号
摘要
19
引用
收藏
页码:621 / 631
相关论文
共 50 条
  • [1] A Physics-Informed Neural Network for the Prediction of Unmanned Surface Vehicle Dynamics
    Xu, Peng-Fei
    Han, Chen-Bo
    Cheng, Hong-Xia
    Cheng, Chen
    Ge, Tong
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (02)
  • [2] Physics-informed generative neural network: an application to troposphere temperature prediction
    Chen, Zhihao
    Gao, Jie
    Wang, Weikai
    Yan, Zheng
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2021, 16 (06)
  • [3] Physics-informed neural network for velocity prediction in electromagnetic launching manufacturing
    Sun, Hao
    Liao, Yuxuan
    Jiang, Hao
    Li, Guangyao
    Cui, Junjia
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 220
  • [4] A physics-informed neural network approach to fatigue life prediction using small quantity of samples
    Chen, Dong
    Li, Yazhi
    Liu, Ke
    Li, Yi
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2023, 166
  • [5] A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network
    Zhou, Taotao
    Jiang, Shan
    Han, Te
    Zhu, Shun-Peng
    Cai, Yinan
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2023, 166
  • [6] Physics-informed mode decomposition neural network for structured light in multimode fibers
    Zhang, Qian
    Sui, Yuan
    Rothe, Stefan
    Czarske, Juergen
    [J]. 2023 IEEE PHOTONICS CONFERENCE, IPC, 2023,
  • [7] Physics-informed neural network method for modelling beam-wall interactions
    Fujita, Kazuhiro
    [J]. ELECTRONICS LETTERS, 2022, 58 (10) : 390 - 392
  • [8] FlowDNN: a physics-informed deep neural network for fast and accurate flow prediction
    Chen, Donglin
    Gao, Xiang
    Xu, Chuanfu
    Wang, Siqi
    Chen, Shizhao
    Fang, Jianbin
    Wang, Zheng
    [J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2022, 23 (02) : 207 - 219
  • [9] Learning thermoacoustic interactions in combustors using a physics-informed neural network
    Mariappan, Sathesh
    Nath, Kamaljyoti
    Em Karniadakis, George
    [J]. Engineering Applications of Artificial Intelligence, 2024, 138
  • [10] Indoor airflow field reconstruction using physics-informed neural network
    Wei, Chenghao
    Ooka, Ryozo
    [J]. BUILDING AND ENVIRONMENT, 2023, 242